|
This article is cited in 1 scientific paper (total in 1 paper)
Bounds for multivariate residues and for the polynomials in the elimination theorem
Martín Sombraab, Alain Ygerc a Institució Catalana de Recerca i Estudis Avançats (ICREA). Passeig Lluís Companys 23, 08010 Barcelona, Spain
b Departament de Matemàiques i Informàtica, Universitat de Barcelona. Gran Via 585, 08007 Barcelona, Spain
c Institut de Mathématiques, Université de Bordeaux. 351 cours de la Libération, 33405 Talence, France
Abstract:
We present several upper bounds for the height of global residues of rational forms on an affine variety defined over $\mathbb{Q}$. As an application, we deduce upper bounds for the height of the coefficients in the Bergman–Weil trace formula.
We also present upper bounds for the degree and the height of the polynomials in the elimination theorem on an affine variety defined over $\mathbb{Q}$. This is an arithmetic analogue of Jelonek's effective elimination theorem, and it plays a crucial role in the proof of our bounds for the height of global residues.
Key words and phrases:
residues, membership problems, height.
Citation:
Martín Sombra, Alain Yger, “Bounds for multivariate residues and for the polynomials in the elimination theorem”, Mosc. Math. J., 21:1 (2021), 129–173
Linking options:
https://www.mathnet.ru/eng/mmj789 https://www.mathnet.ru/eng/mmj/v21/i1/p129
|
Statistics & downloads: |
Abstract page: | 56 | References: | 17 |
|