Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2020, Volume 20, Number 3, Pages 475–493
DOI: https://doi.org/10.17323/1609-4514-2020-20-3-475-493
(Mi mmj774)
 

This article is cited in 7 scientific papers (total in 7 papers)

Extended $r$-spin theory and the mirror symmetry for the $A_{r-1}$-singularity

Alexandr Buryak

School of Mathematics, University of Leeds, Leeds, LS2 9JT, United Kingdom
Full-text PDF Citations (7)
References:
Abstract: By a famous result of K. Saito, the parameter space of the miniversal deformation of the $A_{r-1}$-singularity carries a Frobenius manifold structure. The Landau–Ginzburg mirror symmetry says that, in the flat coordinates, the potential of this Frobenius manifold is equal to the generating series of certain integrals over the moduli space of $r$-spin curves. In this paper we show that the parameters of the miniversal deformation, considered as functions of the flat coordinates, also have a simple geometric interpretation using the extended $r$-spin theory, first considered by T. J. Jarvis, T. Kimura and A. Vaintrob, and studied in a recent paper of E. Clader, R. J. Tessler and the author. We prove a similar result for the singularity $D_4$ and present conjectures for the singularities $E_6$ and $E_8$.
Key words and phrases: moduli space of curves, Frobenius manifold, singularity, mirror symmetry.
Funding agency Grant number
EU Framework Programme for Research and Innovation 79e7635
Russian Foundation for Basic Research 20-01-00579
16-01-00409_a
This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 79e7635 and was also supported by grants RFBR-20-01-00579 and RFBR-16-01-00409.
Bibliographic databases:
Document Type: Article
MSC: 14H10, 53D45
Language: English
Citation: Alexandr Buryak, “Extended $r$-spin theory and the mirror symmetry for the $A_{r-1}$-singularity”, Mosc. Math. J., 20:3 (2020), 475–493
Citation in format AMSBIB
\Bibitem{Bur20}
\by Alexandr~Buryak
\paper Extended $r$-spin theory and the mirror symmetry for the $A_{r-1}$-singularity
\jour Mosc. Math.~J.
\yr 2020
\vol 20
\issue 3
\pages 475--493
\mathnet{http://mi.mathnet.ru/mmj774}
\crossref{https://doi.org/10.17323/1609-4514-2020-20-3-475-493}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000533541600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085101422}
Linking options:
  • https://www.mathnet.ru/eng/mmj774
  • https://www.mathnet.ru/eng/mmj/v20/i3/p475
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:125
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024