Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2020, Volume 20, Number 3, Pages 453–474
DOI: https://doi.org/10.17323/1609-4514-2020-20-3-453-474
(Mi mmj773)
 

This article is cited in 3 scientific papers (total in 3 papers)

Maximum number of points on intersection of a cubic surface and a non-degenerate Hermitian surface

Peter Beelen, Mrinmoy Datta

Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK 2800, Kgs. Lyngby, Denmark
Full-text PDF Citations (3)
References:
Abstract: In 1991 Sørensen proposed a conjecture for the maximum number of points on the intersection of a surface of degree $d$ and a non-degenerate Hermitian surface in $\mathbb{P}^3(\mathbb{F}_{q^2})$. The conjecture was proven to be true by Edoukou in the case when $d=2$. In this paper, we prove that the conjecture is true for $d=3$. For $q \ge 4$, we also determine the second highest number of rational points on the intersection of a cubic surface and a non-degenerate Hermitian surface. Finally, we classify all the cubic surfaces that admit the highest and, for $q \ge 4$, the second highest number of points in common with a non-degenerate Hermitian surface. This classification disproves a conjecture proposed by Edoukou, Ling and Xing.
Key words and phrases: hermitian surfaces, cubic surfaces, intersection of surfaces, rational points.
Funding agency Grant number
Independent Research Fund Denmark DFF-8021-00030B
DFF-6108-00362
The authors would like to acknowledge the support from The Danish Council for Independent Research (Grant No. DFF-8021-00030B and DFF-6108-00362 respectively).
Bibliographic databases:
Document Type: Article
MSC: 14G05, 14G15, 05B25
Language: English
Citation: Peter Beelen, Mrinmoy Datta, “Maximum number of points on intersection of a cubic surface and a non-degenerate Hermitian surface”, Mosc. Math. J., 20:3 (2020), 453–474
Citation in format AMSBIB
\Bibitem{BeeDat20}
\by Peter~Beelen, Mrinmoy~Datta
\paper Maximum number of points on intersection of~a~cubic surface and a non-degenerate Hermitian~surface
\jour Mosc. Math.~J.
\yr 2020
\vol 20
\issue 3
\pages 453--474
\mathnet{http://mi.mathnet.ru/mmj773}
\crossref{https://doi.org/10.17323/1609-4514-2020-20-3-453-474}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000533541600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085122931}
Linking options:
  • https://www.mathnet.ru/eng/mmj773
  • https://www.mathnet.ru/eng/mmj/v20/i3/p453
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:122
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024