Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2020, Volume 20, Number 3, Pages 441–451
DOI: https://doi.org/10.17323/1609-4514-2020-20-3-441-451
(Mi mmj772)
 

A generalization of the Fejér–Jackson inequality and related results

Horst Alzera, Man Kam Kwongb

a Morsbacher Straße 10, 51545 Waldbröl, Germany
b Department of Applied Mathematics, The Hong Kong Polytechnic University, Hunghom, Hong Kong
References:
Abstract: We present several results for trigonometric sums related to the classical Fejér–Jackson inequality, namely,
$$ \displaystyle 0<\sum_{k=1}^n\frac{\sin(kx)}{k} {(n\geq 1, 0<x<\pi)}. $$
Among these are:
1. Let $r\in \mathbb{R}$. Then, $ 0<\sum\limits_{\substack{k=1 \\ k \text{odd}}}^n \frac{\sin(kx)}{k} r^k $ holds for all $n\geq 1$ and $x\in (0,\pi)$ if and only if $r\in (0,1]$.
2. Let $a\in\mathbb{R}$. Then, $ 0<\sum\limits_{k=0}^{n-1} \cos(kx) \biggl( \sum\limits_{j=k+1}^n {j\choose k} \frac{\sin((j-k)x)}{j} a^j \biggr) $ holds for all $n\geq 1$ and $x\in (0,\pi)$ if and only if $a\in (0,1/2]$. For $ a=1/2 $, the result reduces to that of Fejér–Jackson.
3. Let $b\in \mathbb{R}$. Then, $ 0< \sum\limits_{k=0}^{n-1} \cos(kx) \biggl( \sum\limits_{\substack{j=k+1 \\ j \text{odd}}}^n {j\choose k} \frac{\sin((j-k)x)}{j} b^j \biggr) $ holds for all $n\geq 1$ and $x\in (0,\pi)$ if and only if $b\in (0,1/2]$. An analogous result holds when “odd” is replaced by “even” and $ (0,\pi ) $ by $ (0,\frac{\pi }{2} ) $.
Key words and phrases: Fejér–Jackson inequality, trigonometric sums, harmonic numbers, combinatorial identity.
Bibliographic databases:
Document Type: Article
MSC: 26D05, 33B10, 05A19
Language: English
Citation: Horst Alzer, Man Kam Kwong, “A generalization of the Fejér–Jackson inequality and related results”, Mosc. Math. J., 20:3 (2020), 441–451
Citation in format AMSBIB
\Bibitem{AlzKwo20}
\by Horst~Alzer, Man~Kam~Kwong
\paper A generalization of the Fej\'er--Jackson inequality and related results
\jour Mosc. Math.~J.
\yr 2020
\vol 20
\issue 3
\pages 441--451
\mathnet{http://mi.mathnet.ru/mmj772}
\crossref{https://doi.org/10.17323/1609-4514-2020-20-3-441-451}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000533541600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084740184}
Linking options:
  • https://www.mathnet.ru/eng/mmj772
  • https://www.mathnet.ru/eng/mmj/v20/i3/p441
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024