|
Orbital Chen theorem for germs of $\mathcal{C}^{\infty}$ vector fields with degenerate singularity
Jessica Jaurez Rosas, Laura Ortiz-Bobadilla Instituto de Matemáticas, Universidad Nacional Autónoma de México (UNAM), Área de la Investigación Científica, Circuito exterior, Ciudad Universitaria, 04510, Ciudad de México, México
Abstract:
We consider germs of $\mathcal{C}^{\infty}$ vector fields in $(\mathbb{R}^2, 0)$ with degenerate non-dicritic singularity (having ($n-1$)-jet zero and non-zero $n$-jet) and their corresponding foliations. Under some natural hypothesis we prove that the orbital formal equivalence of any two such vector fields implies their orbital $\mathcal{C}^{\infty}$ equivalence (and thus the $\mathcal{C}^{\infty}$ equivalence of the corresponding foliations). This result generalizes Chen Theorem for foliations defined by generic $\mathcal{C}^{\infty}$ germs of vector fields in $(\mathbb{R}^2, 0)$ having hyperbolic singularity.
Key words and phrases:
formal normal forms, foliations, flat vector fields, rigidity.
Citation:
Jessica Jaurez Rosas, Laura Ortiz-Bobadilla, “Orbital Chen theorem for germs of $\mathcal{C}^{\infty}$ vector fields with degenerate singularity”, Mosc. Math. J., 20:2 (2020), 375–404
Linking options:
https://www.mathnet.ru/eng/mmj769 https://www.mathnet.ru/eng/mmj/v20/i2/p375
|
Statistics & downloads: |
Abstract page: | 121 | References: | 30 |
|