Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2020, Volume 20, Number 2, Pages 343–374
DOI: https://doi.org/10.17323/1609-4514-2020-20-2-343-374
(Mi mmj768)
 

A new family of elliptic curves with unbounded rank

Richard Griffon

Departement Mathematik und Informatik, Universität Basel, Spiegelgasse 1, 4051 Basel, Switzerland
References:
Abstract: Let $\mathbb{F}_q$ be a finite field of odd characteristic and $K= \mathbb{F}_q(t)$. For any integer $d\geq 1$, consider the elliptic curve $E_d$ over $K$ defined by $y^2=x\cdot\big(x^2+t^{2d}\cdot x-4t^{2d}\big)$. We show that the rank of the Mordell–Weil group $E_d(K)$ is unbounded as $d$ varies. The curve $E_d$ satisfies the BSD conjecture, so that its rank equals the order of vanishing of its $L$-function at the central point. We provide an explicit expression for the $L$-function of $E_d$, and use it to study this order of vanishing in terms of $d$.
Key words and phrases: elliptic curves over function fields, explicit computation of $L$-functions, BSD conjecture, unbounded ranks, explicit Jacobi sums.
Funding agency Grant number
Agence Nationale de la Recherche ANR-17-CE400012
Universiteit Leiden
University of Basel
The writing of this paper was started at Universiteit Leiden, and was finished at Universitat Basel. The author is grateful to both institutions for providing financial support and perfect working conditions; he is also supported in part by the ANR grant `FLAIR' (ANR-17-CE400012).
Bibliographic databases:
Document Type: Article
Language: English
Citation: Richard Griffon, “A new family of elliptic curves with unbounded rank”, Mosc. Math. J., 20:2 (2020), 343–374
Citation in format AMSBIB
\Bibitem{Gri20}
\by Richard~Griffon
\paper A new family of elliptic curves with unbounded rank
\jour Mosc. Math.~J.
\yr 2020
\vol 20
\issue 2
\pages 343--374
\mathnet{http://mi.mathnet.ru/mmj768}
\crossref{https://doi.org/10.17323/1609-4514-2020-20-2-343-374}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000526932000006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084228635}
Linking options:
  • https://www.mathnet.ru/eng/mmj768
  • https://www.mathnet.ru/eng/mmj/v20/i2/p343
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:105
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024