Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2020, Volume 20, Number 2, Pages 311–321
DOI: https://doi.org/10.17323/1609-4514-2020-20-2-311-321
(Mi mmj766)
 

Tropical approximation of exponential sums and the multivariate Fujiwara bound

Jens Forsgård

Department of Mathematics, Texas A&M University, College Station, TX 77843
References:
Abstract: We prove a multivariate analogue of the Fujiwara bound: for a $d$-variate exponential sum $f$ with exponents having spacing $\mu$, the distance from a point $x$ in the amoeba $\mathscr{A}_f$ to the Archimedean tropical variety of $f$ is at most $d \sqrt{d} 2\log(2 + \sqrt{3})/ \mu$. If all exponents are integral, then the bound can be improved to $d \log(2 + \sqrt{3})$. Both bounds are within a constant factor of optimal.
Key words and phrases: Fujiwara bound, exponential sum, amoeba, tropical variety.
Bibliographic databases:
Document Type: Article
MSC: Primary 11L03; Secondary 14T03
Language: English
Citation: Jens Forsgård, “Tropical approximation of exponential sums and the multivariate Fujiwara bound”, Mosc. Math. J., 20:2 (2020), 311–321
Citation in format AMSBIB
\Bibitem{For20}
\by Jens~Forsg{\aa}rd
\paper Tropical approximation of exponential sums and the multivariate Fujiwara bound
\jour Mosc. Math.~J.
\yr 2020
\vol 20
\issue 2
\pages 311--321
\mathnet{http://mi.mathnet.ru/mmj766}
\crossref{https://doi.org/10.17323/1609-4514-2020-20-2-311-321}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000526932000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084226870}
Linking options:
  • https://www.mathnet.ru/eng/mmj766
  • https://www.mathnet.ru/eng/mmj/v20/i2/p311
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:94
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024