Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2020, Volume 20, Number 1, Pages 153–183
DOI: https://doi.org/10.17323/1609-4514-2020-20-1-153-183
(Mi mmj761)
 

This article is cited in 4 scientific papers (total in 4 papers)

Algebraic curves $A^{\circ l}(x)-U(y)=0$ and arithmetic of orbits of rational functions

F. Pakovich

Department of Mathematics, Ben-Gurion University of the Negev, P.O.B. 653 Beer Sheva, 8410501 Israel
Full-text PDF Citations (4)
References:
Abstract: We give a description of pairs of complex rational functions $A$ and $U$ of degree at least two such that for every $d\geq 1$ the algebraic curve $A^{\circ d}(x)-U(y)=0$ has a factor of genus zero or one. In particular, we show that if $A$ is not a “generalized Lattès map”, then this condition is satisfied if and only if there exists a rational function $V$ such that $U\circ V=A^{\circ l}$ for some $l\geq 1$. We also prove a version of the dynamical Mordell–Lang conjecture, concerning intersections of orbits of points from $\mathbb{P}^1(K)$ under iterates of $A$ with the value set $U(\mathbb{P}^1(K))$, where $A$ and $U$ are rational functions defined over a number field $K$.
Key words and phrases: Semiconjugate rational functions, dynamical Mordell–Lang conjecture, Riemann surface orbifolds, separated variable curves.
Funding agency Grant number
Israel Science Foundation 1432/18
This research was supported in part by ISF Grant No. 1432/18.
Bibliographic databases:
Document Type: Article
MSC: Primary 37F10; Secondary 37P55, 14G05, 14H45
Language: English
Citation: F. Pakovich, “Algebraic curves $A^{\circ l}(x)-U(y)=0$ and arithmetic of orbits of rational functions”, Mosc. Math. J., 20:1 (2020), 153–183
Citation in format AMSBIB
\Bibitem{Pak20}
\by F.~Pakovich
\paper Algebraic curves $A^{\circ l}(x)-U(y)=0$ and arithmetic of orbits of rational functions
\jour Mosc. Math.~J.
\yr 2020
\vol 20
\issue 1
\pages 153--183
\mathnet{http://mi.mathnet.ru/mmj761}
\crossref{https://doi.org/10.17323/1609-4514-2020-20-1-153-183}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000509758600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078948392}
Linking options:
  • https://www.mathnet.ru/eng/mmj761
  • https://www.mathnet.ru/eng/mmj/v20/i1/p153
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:69
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024