Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2020, Volume 20, Number 1, Pages 127–151
DOI: https://doi.org/10.17323/1609-4514-2020-20-1-127-151
(Mi mmj760)
 

This article is cited in 4 scientific papers (total in 4 papers)

Modular vector fields attached to Dwork family: $\mathfrak{sl}_2(\mathbb{C})$ Lie algebra

Younes Nikdelan

Universidade do Estado do Rio de Janeiro (UERJ), Instituto de Matemática e Estatística (IME), Departamento de Análise Matemática: Rua São Francisco Xavier, 524, Rio de Janeiro, Brazil / CEP: 20550-900
Full-text PDF Citations (4)
References:
Abstract: This paper aims to show that a certain moduli space $\mathsf{T}$, which arises from the so-called Dwork family of Calabi–Yau $n$-folds, carries a special complex Lie $\{$algebra$\}$ containing a copy of $\mathfrak{sl}_2(\mathbb{C})$. In order to achieve this goal, we introduce an algebraic group $\mathsf{G}$ acting from the right on $\mathsf{T}$ and describe its Lie algebra $\mathsf{Lie(G)}$. We observe that $\mathsf{Lie(G)}$ is isomorphic to a Lie subalgebra of the space of the vector fields on $\mathsf{T}$. In this way, it turns out that $\mathsf{Lie(G)}$ and the modular vector field $\mathsf{R}$ generate another Lie algebra $\mathfrak{G}$, called AMSY-Lie algebra, satisfying $\dim (\mathfrak{G})=\dim (\mathsf{T})$. We find a copy of $\mathfrak{sl}_2(\mathbb{C})$ containing $\mathsf{R}$ as a Lie subalgebra of $\mathfrak{G}$. The proofs are based on an algebraic method calling “Gauss–Manin connection in disguise”. Some explicit examples for $n=1,2,3,4$ are stated as well.
Key words and phrases: Complex vector fields, Gauss–Manin connection, Dwork family, Hodge filtration, modular form.
Funding agency Grant number
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro E-26/010.001735/2016
During the preparation period of this manuscript the author was supported in part by "Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ)"with process number E-26/010.001735/2016.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Younes Nikdelan, “Modular vector fields attached to Dwork family: $\mathfrak{sl}_2(\mathbb{C})$ Lie algebra”, Mosc. Math. J., 20:1 (2020), 127–151
Citation in format AMSBIB
\Bibitem{Nik20}
\by Younes~Nikdelan
\paper Modular vector fields attached to Dwork family: $\mathfrak{sl}_2(\mathbb{C})$ Lie algebra
\jour Mosc. Math.~J.
\yr 2020
\vol 20
\issue 1
\pages 127--151
\mathnet{http://mi.mathnet.ru/mmj760}
\crossref{https://doi.org/10.17323/1609-4514-2020-20-1-127-151}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000509758600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078903181}
Linking options:
  • https://www.mathnet.ru/eng/mmj760
  • https://www.mathnet.ru/eng/mmj/v20/i1/p127
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025