Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2020, Volume 20, Number 1, Pages 67–91
DOI: https://doi.org/10.17323/1609-4514-2020-20-1-67-91
(Mi mmj758)
 

This article is cited in 7 scientific papers (total in 7 papers)

Mass transportation functionals on the sphere with applications to the logarithmic Minkowski problem

Alexander V. Kolesnikov

National Research University Higher School of Economics, Russian Federation
Full-text PDF Citations (7)
References:
Abstract: We study the transportation problem on the unit sphere $S^{n-1}$ for symmetric probability measures and the cost function $c(x,y) = \log \frac{1}{\langle x, y \rangle}$. We calculate the variation of the corresponding Kantorovich functional $K$ and study a naturally associated metric-measure space on $S^{n-1}$ endowed with a Riemannian metric generated by the corresponding transportational potential. We introduce a new transportational functional which minimizers are solutions to the symmetric log-Minkowski problem and prove that $K$ satisfies the following analog of the Gaussian transportation inequality for the uniform probability measure ${\sigma}$ on $S^{n-1}$: $\frac{1}{n} \mathrm{Ent}(\nu) \ge K({\sigma}, \nu)$. It is shown that there exists a remarkable similarity between our results and the theory of the Kähler–Einstein equation on Euclidean space. As a by-product we obtain a new proof of uniqueness of solution to the log-Minkowski problem for the uniform measure.
Key words and phrases: Convex bodies, optimal transportation, Kantorovich duality, log-Minkowski problem, Kähler–Einstein equation.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00662_а
Deutsche Forschungsgemeinschaft RO 1195/12-1
Ministry of Education and Science of the Russian Federation
Simons Foundation
The author was supported by RFBR project 17-01-00662 and DFG project RO 1195/12-1. This work has been funded by the Russian Academic Excellence Project '5-100' and supported in part by the Simons Foundation.
Bibliographic databases:
Document Type: Article
MSC: 52A40, 90C08
Language: English
Citation: Alexander V. Kolesnikov, “Mass transportation functionals on the sphere with applications to the logarithmic Minkowski problem”, Mosc. Math. J., 20:1 (2020), 67–91
Citation in format AMSBIB
\Bibitem{Kol20}
\by Alexander~V.~Kolesnikov
\paper Mass transportation functionals on the sphere with applications to the logarithmic Minkowski~problem
\jour Mosc. Math.~J.
\yr 2020
\vol 20
\issue 1
\pages 67--91
\mathnet{http://mi.mathnet.ru/mmj758}
\crossref{https://doi.org/10.17323/1609-4514-2020-20-1-67-91}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000509758600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078881722}
Linking options:
  • https://www.mathnet.ru/eng/mmj758
  • https://www.mathnet.ru/eng/mmj/v20/i1/p67
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:126
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024