Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2020, Volume 20, Number 1, Pages 43–65
DOI: https://doi.org/10.17323/1609-4514-2020-20-1-43-65
(Mi mmj757)
 

This article is cited in 18 scientific papers (total in 18 papers)

Simple Witt modules that are finitely generated over the Cartan subalgebra

Xiangqian Guoa, Genqiang Liub, Rencai Luc, Kaiming Zhaode

a School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, 730000 P. R. China
b School of Mathematics and Statistics, and Institute of Contemporary Mathematics, Henan University, Kaifeng 475004, P. R. China
c Department of Mathematics, Soochow University, Suzhou, P. R. China
d School of Mathematical Science, Hebei Normal (Teachers) University, Shijiazhuang, Hebei, 050016 P. R. China and
e Department of Mathematics, Wilfrid Laurier University, Waterloo, ON, Canada N2L 3C5
Full-text PDF Citations (18)
References:
Abstract: Let $d\ge1$ be an integer, $W_d$ and $\mathcal{K}_d$ be the Witt algebra and the Weyl algebra over the Laurent polynomial algebra $A_d=\mathbb{C} [x_1^{\pm1}, x_2^{\pm1}, \dots, x_d^{\pm1}]$, respectively. For any $\mathfrak{gl}_d$-module $V$ and any admissible module $P$ over the extended Witt algebra $\widetilde{W}_d$, we define a $W_d$-module structure on the tensor product $P\otimes V$. In this paper, we classify all simple $W_d$-modules that are finitely generated over the Cartan subalgebra. They are actually the $W_d$-modules $P \otimes V$ for a finite-dimensional simple $\mathfrak{gl}_d$-module $V$ and a simple $\mathcal{K}_d$-module $P$ that is a finite-rank free module over the polynomial algebra in the variables $x_1\frac{\partial}{\partial x_1},\dots,x_d\frac{\partial}{\partial x_d}$, except for a few cases which are also clearly described. We also characterize all simple $\mathcal{K}_d$-modules and all simple admissible $\widetilde{W}_d$-modules that are finitely generated over the Cartan subalgebra.
Key words and phrases: Witt algebra, weight module, irreducible module, de Rham complex, Quillen–Suslin Theorem.
Funding agency Grant number
National Natural Science Foundation of China 11971440
11471233
11371134
11871190
Outstanding Young Talent Research Fund of Zhengzhou University 1421315071
National Natural Science Foundation of China 11771122
Henan University yqpy20140044
Natural Sciences and Engineering Research Council of Canada (NSERC) 311907-2015
X.G. is supported in part by NSF of China (Grant 11971440) and the Outstanding Young Talent Research Fund of Zhengzhou University (Grant 1421315071); G.L. is supported in part by NSFC (Grant 11771122) and the grant at Henan University (yqpy20140044); R.L. was supported in part by the NSF of China (Grant 11471233, 11371134); K.Z. is supported in part by NSF of China (Grant 11871190) and NSERC (Grant 311907-2015).
Bibliographic databases:
Document Type: Article
Language: English
Citation: Xiangqian Guo, Genqiang Liu, Rencai Lu, Kaiming Zhao, “Simple Witt modules that are finitely generated over the Cartan subalgebra”, Mosc. Math. J., 20:1 (2020), 43–65
Citation in format AMSBIB
\Bibitem{GuoLiuLu20}
\by Xiangqian~Guo, Genqiang~Liu, Rencai~Lu, Kaiming~Zhao
\paper Simple Witt modules that are finitely generated over the Cartan subalgebra
\jour Mosc. Math.~J.
\yr 2020
\vol 20
\issue 1
\pages 43--65
\mathnet{http://mi.mathnet.ru/mmj757}
\crossref{https://doi.org/10.17323/1609-4514-2020-20-1-43-65}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000509758600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078951622}
Linking options:
  • https://www.mathnet.ru/eng/mmj757
  • https://www.mathnet.ru/eng/mmj/v20/i1/p43
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:103
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024