Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2020, Volume 20, Number 1, Pages 27–42
DOI: https://doi.org/10.17323/1609-4514-2020-20-1-27-42
(Mi mmj756)
 

This article is cited in 1 scientific paper (total in 1 paper)

Matrix polar decomposition and generalisations of the Blaschke–Petkantschin formula in integral geometry

Peter J. Forrester

Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia
Full-text PDF Citations (1)
References:
Abstract: In the work [Bull. Austr. Math. Soc. 85 (2012), 315–234], S. R. Moghadasi has shown how the decomposition of the $N$-fold product of Lebesgue measure on $\mathbb{R}^n$ implied by matrix polar decomposition can be used to derive the Blaschke–Petkantschin decomposition of measure formula from integral geometry. We use known formulas from random matrix theory to give a simplified derivation of the decomposition of Lebesgue product measure implied by matrix polar decomposition, applying too to the cases of complex and real quaternion entries, and we give corresponding generalisations of the Blaschke–Petkantschin formula. A number of applications to random matrix theory and integral geometry are given, including to the calculation of the moments of the volume content of the convex hull of $k \le N+1$ points in $\mathbb R^N$, $\mathbb C^N$ or $\mathbb H^N$ with a Gaussian or uniform distribution.
Key words and phrases: Blaschke–Petkantschin formula, matrix polar decomposition, integral geometry.
Funding agency Grant number
Australian Research Council
This research is part of the program of study supported by the ARC Centre of Excellence for Mathematical & Statistical Frontiers.
Bibliographic databases:
Document Type: Article
MSC: Primary 15B52; Secondary 52A22
Language: English
Citation: Peter J. Forrester, “Matrix polar decomposition and generalisations of the Blaschke–Petkantschin formula in integral geometry”, Mosc. Math. J., 20:1 (2020), 27–42
Citation in format AMSBIB
\Bibitem{For20}
\by Peter~J.~Forrester
\paper Matrix polar decomposition and generalisations of the Blaschke--Petkantschin formula in integral geometry
\jour Mosc. Math.~J.
\yr 2020
\vol 20
\issue 1
\pages 27--42
\mathnet{http://mi.mathnet.ru/mmj756}
\crossref{https://doi.org/10.17323/1609-4514-2020-20-1-27-42}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000509758600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078945132}
Linking options:
  • https://www.mathnet.ru/eng/mmj756
  • https://www.mathnet.ru/eng/mmj/v20/i1/p27
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:93
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024