Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2020, Volume 20, Number 1, Pages 1–25
DOI: https://doi.org/10.17323/1609-4514-2020-20-1-1-25
(Mi mmj755)
 

This article is cited in 3 scientific papers (total in 3 papers)

Sturm's theorem on the zeros of sums of eigenfunctions: Gelfand's strategy implemented

Pierre Bérarda, Bernard Helfferb

a Université Grenoble Alpes and CNRS, Institut Fourier, CS 40700, 38058 Grenoble Cedex 9, France
b Laboratoire Jean Leray, Université de Nantes and CNRS, F44322 Nantes Cedex, France, and LMO, Université Paris-Sud
Full-text PDF Citations (3)
References:
Abstract: In the second section “Courant–Gelfand theorem” of his last published paper (Topological properties of eigenoscillations in mathematical physics, Proc. Steklov Institute Math. 273 (2011), 25–34), Arnold recounts Gelfand's strategy to prove that the zeros of any linear combination of the $n$ first eigenfunctions of the Sturm–Liouville problem
$$- y''(x) + q(x) y(x) = \lambda y(x) \text{ in } ]0,1[,\text{ with }y(0)=y(1)=0,$$
divide the interval into at most $n$ connected components, and concludes that “the lack of a published formal text with a rigorous proof …is still distressing.”
Inspired by Quantum mechanics, Gelfand's strategy consists in replacing the analysis of linear combinations of the $n$ first eigenfunctions by that of their Slater determinant, which is the first eigenfunction of the associated $n$-particle operator acting on Fermions.
In the present paper, we implement Gelfand's strategy, and give a complete proof of the above assertion. As a matter of fact, refining Gelfand's strategy, we prove a stronger property taking the multiplicity of zeros into account, a result which actually goes back to Sturm (1836). We also compare Gelfand's strategy to Kellogg's approach, and the theory of oscillation matrices and kernels.
Bibliographic databases:
Document Type: Article
MSC: 35P99, 35Q99, 58J50
Language: English
Citation: Pierre Bérard, Bernard Helffer, “Sturm's theorem on the zeros of sums of eigenfunctions: Gelfand's strategy implemented”, Mosc. Math. J., 20:1 (2020), 1–25
Citation in format AMSBIB
\Bibitem{BerHel20}
\by Pierre~B\'erard, Bernard~Helffer
\paper Sturm's theorem on the zeros of sums of eigenfunctions: Gelfand's strategy implemented
\jour Mosc. Math.~J.
\yr 2020
\vol 20
\issue 1
\pages 1--25
\mathnet{http://mi.mathnet.ru/mmj755}
\crossref{https://doi.org/10.17323/1609-4514-2020-20-1-1-25}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000509758600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078933950}
Linking options:
  • https://www.mathnet.ru/eng/mmj755
  • https://www.mathnet.ru/eng/mmj/v20/i1/p1
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025