Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2019, Volume 19, Number 4, Pages 761–788
DOI: https://doi.org/10.17323/1609-4514-2019-19-4-761-788
(Mi mmj752)
 

This article is cited in 2 scientific papers (total in 2 papers)

Poincaré function for moduli of differential-geometric structures

Boris Kruglikov

Department of Mathematics and Statistics, UiT the Arctic University of Norway, Tromsø 90-37, Norway
Full-text PDF Citations (2)
References:
Abstract: The Poincaré function is a compact form of counting moduli in local geometric problems. We discuss its property in relation to V. Arnold's conjecture, and derive this conjecture in the case when the pseudogroup acts algebraically and transitively on the base. Then we survey the known counting results for differential invariants and derive new formulae for several other classification problems in geometry and analysis.
Key words and phrases: Differential Invariants, Invariant Derivations, conformal metric structure, Hilbert polynomial, Poincaré function.
Bibliographic databases:
Document Type: Article
MSC: Primary 53A55, 22F05, 58H05; Secondary 16W22, 13A50
Language: English
Citation: Boris Kruglikov, “Poincaré function for moduli of differential-geometric structures”, Mosc. Math. J., 19:4 (2019), 761–788
Citation in format AMSBIB
\Bibitem{Kru19}
\by Boris~Kruglikov
\paper Poincar\'e function for moduli of differential-geometric structures
\jour Mosc. Math.~J.
\yr 2019
\vol 19
\issue 4
\pages 761--788
\mathnet{http://mi.mathnet.ru/mmj752}
\crossref{https://doi.org/10.17323/1609-4514-2019-19-4-761-788}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000506166200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074797803}
Linking options:
  • https://www.mathnet.ru/eng/mmj752
  • https://www.mathnet.ru/eng/mmj/v19/i4/p761
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:128
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024