Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2003, Volume 3, Number 1, Pages 45–61
DOI: https://doi.org/10.17323/1609-4514-2003-3-1-45-61
(Mi mmj75)
 

This article is cited in 5 scientific papers (total in 5 papers)

Periodic Schrödinger operators and Aharonov–Bohm Hamiltonians

B. Helffera, T. Hoffmann-Ostenhofb, N. S. Nadirashvilic

a Paris-Sud University 11
b International Erwin Schrödinger Institute for Mathematical Physics
c University of Chicago
Full-text PDF Citations (5)
References:
Abstract: Let $H=-\Delta+V$ be a two-dimensional Schrödinger operator defined on a domain $\Omega\subset\mathbb R^2$ with Dirichlet boundary conditions. Suppose that $H$ and $\Omega$ are that $V(x_1,x_2)=V(-x_1,x_2)$ and that $(x_1,x_2)\in\Omega$ implies $(x_1+1,x_2)\in\Omega$ and $(-x_1,x_2)\in\Omega$. We investigate the associated Floquet operator $H_(q)$, $0\leq 1$. In particular, we show that the lowest eigenvalue $\lambda_q$ is simple for $q\neq 1/2$ and strictly increasing in $q$ for $0<q<1/2$ and that the associated complex-valued eigenfunction $u_q$ has empty zero set. For the Dirichlet realization of the Aharonov–Bohm Hamiltonian in an annulus-like domain with an axis of symmetry,
$$H_{A,V}=(i\partial_{x-1}+ A_1)^2+(i\partial x_2+A_2)^2+V$$
, we obtain similar results, where the parameter $q$ is replaced by the $\frac{1}{2\pi}$-flux through the hole, under the assumption that the magnetic field curl $A$ vanishes identically.
Key words and phrases: Schrödinger operator, magnetic field, eigenvalues.
Received: May 7, 2002
Bibliographic databases:
MSC: 35B05
Language: English
Citation: B. Helffer, T. Hoffmann-Ostenhof, N. S. Nadirashvili, “Periodic Schrödinger operators and Aharonov–Bohm Hamiltonians”, Mosc. Math. J., 3:1 (2003), 45–61
Citation in format AMSBIB
\Bibitem{HelHofNad03}
\by B.~Helffer, T.~Hoffmann-Ostenhof, N.~S.~Nadirashvili
\paper Periodic Schr\"odinger operators and Aharonov--Bohm Hamiltonians
\jour Mosc. Math.~J.
\yr 2003
\vol 3
\issue 1
\pages 45--61
\mathnet{http://mi.mathnet.ru/mmj75}
\crossref{https://doi.org/10.17323/1609-4514-2003-3-1-45-61}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1996802}
\zmath{https://zbmath.org/?q=an:1043.35057}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208594100005}
Linking options:
  • https://www.mathnet.ru/eng/mmj75
  • https://www.mathnet.ru/eng/mmj/v3/i1/p45
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:332
    References:69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024