Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2019, Volume 19, Number 3, Pages 597–613
DOI: https://doi.org/10.17323/1609-4514-2019-19-3-597-613
(Mi mmj747)
 

On monodromy in families of elliptic curves over $\mathbb{C}$

Serge Lvovskiab

a National Research University Higher School of Economics, Russian Federation
b Federal Scientific Centre Science Research Institute of System Analysis at Russian Academy of Science (FNP FSC SRISA RAS)
References:
Abstract: We show that if we are given a smooth non-isotrivial family of curves of genus $1$ over $\mathbb{C}$ with a smooth base $B$ for which the general fiber of the mapping $J\colon B\to\mathbb{A}^1$ (assigning $j$-invariant of the fiber to a point) is connected, then the monodromy group of the family (acting on $H^1(\cdot,\mathbb{Z})$ of the fibers) coincides with $\mathrm{SL}(2,\mathbb{Z})$; if the general fiber has $m\ge2$ connected components, then the monodromy group has index at most $2m$ in $\mathrm{SL}(2,\mathbb{Z})$. By contrast, in any family of hyperelliptic curves of genus $g\ge3$, the monodromy group is strictly less than $\mathrm{Sp}(2g,\mathbb{Z})$. Some applications are given, including that to monodromy of hyperplane sections of Del Pezzo surfaces.
Key words and phrases: Monodromy, elliptic curve, hyperelliptic curve, $j$-invariant, braid, Del Pezzo surface.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation
HSE Basic Research Program
The study has been funded within the framework of the HSE University Basic Research Program and the Russian Academic Excellence Project '5-100'.
Bibliographic databases:
Document Type: Article
MSC: 14D05, 14H52, 14J26
Language: English
Citation: Serge Lvovski, “On monodromy in families of elliptic curves over $\mathbb{C}$”, Mosc. Math. J., 19:3 (2019), 597–613
Citation in format AMSBIB
\Bibitem{Lvo19}
\by Serge~Lvovski
\paper On monodromy in families of elliptic curves over~$\mathbb{C}$
\jour Mosc. Math.~J.
\yr 2019
\vol 19
\issue 3
\pages 597--613
\mathnet{http://mi.mathnet.ru/mmj747}
\crossref{https://doi.org/10.17323/1609-4514-2019-19-3-597-613}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000476630800006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85069852677}
Linking options:
  • https://www.mathnet.ru/eng/mmj747
  • https://www.mathnet.ru/eng/mmj/v19/i3/p597
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:102
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024