Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2019, Volume 19, Number 2, Pages 189–216
DOI: https://doi.org/10.17323/1609-4514-2019-19-2-189-216
(Mi mmj733)
 

Quasi-periodic kicking of circle diffeomorphisms having unique fixed

Kristian Bjerklöv

Department of Mathematics, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
References:
Abstract: We investigate the dynamics of certain homeomorphisms $F\colon\mathbb{T}^2\to\mathbb{T}^2$ of the form $ F(x,y)=(x+\omega,h(x)+f(y)), $ where $\omega\in\mathbb{R}\setminus \mathbb{Q}$, $f\colon \mathbb{T}\to\mathbb{T}$ is a circle diffeomorphism with a unique (and thus neutral) fixed point and $h\colon \mathbb{T}\to\mathbb{T}$ is a function which is zero outside a small interval. We show that such a map can display a non-uniformly hyperbolic behavior: (small) negative fibred Lyapunov exponents for a.e. $(x,y)$ and an attracting non-continuous invariant graph. We apply this result to (projective) $\mathrm{SL}(2,\mathbb{R})$-cocycles $G\colon (x,u)\mapsto (x+\omega,A(x)u)$ with $A(x)=R_{\phi(x)}B$, where $R_\theta$ is a rotation matrix and $B$ is a parabolic matrix, to get examples of non-uniformly hyperbolic cocycles (homotopic to the identity) with perturbatively small Lyapunov exponents.
Key words and phrases: Lyapunov exponents, quasi-periodic forcing, nonuniform hyperbolicity, cocycles.
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Kristian Bjerklöv, “Quasi-periodic kicking of circle diffeomorphisms having unique fixed”, Mosc. Math. J., 19:2 (2019), 189–216
Citation in format AMSBIB
\Bibitem{Bje19}
\by Kristian~Bjerkl\"ov
\paper Quasi-periodic kicking of circle diffeomorphisms having unique fixed
\jour Mosc. Math.~J.
\yr 2019
\vol 19
\issue 2
\pages 189--216
\mathnet{http://mi.mathnet.ru/mmj733}
\crossref{https://doi.org/10.17323/1609-4514-2019-19-2-189-216}
Linking options:
  • https://www.mathnet.ru/eng/mmj733
  • https://www.mathnet.ru/eng/mmj/v19/i2/p189
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:184
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024