Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2002, Volume 2, Number 4, Pages 753–767
DOI: https://doi.org/10.17323/1609-4514-2002-2-4-753-767
(Mi mmj71)
 

This article is cited in 13 scientific papers (total in 13 papers)

Generalized Harish-Chandra modules

I. B. Penkova, V. V. Serganovab

a University of California, Riverside
b University of California, Berkeley
Full-text PDF Citations (13)
References:
Abstract: Let $\mathfrak g$ be a complex reductive Lie algebra and $\mathfrak h$ be a Cartan subalgebra of $\mathfrak g$. If $\mathfrak k$ is a subalgebra of $\mathfrak g$, we call a $\mathfrak g$-module $M$ a strict $(\mathfrak g\mathfrak k)$-module if $\mathfrak k$ coincides with the subalgebra of all elements of $\mathfrak g$ which act locally finitely on $M$. For an intermediate $\mathfrak k$, i.e., such that $\mathfrak h\subset\mathfrak k\subset\mathfrak g$, we construct irreducible strict $(\mathfrak g\mathfrak k)$-modules. The method of construction is based on the $\mathcal D$-module localization theorem of Beilinson and Bernstein. The existence of irreducible strict $(\mathfrak g\mathfrak k)$-modules has been known previously only for very special subalgebras $\mathfrak k$, for instance when $\mathfrak k$ is the (reductive) subalgebra of fixed points of an involution of $\mathfrak g$. In this latter case strict irreducible $(\mathfrak g\mathfrak k)$-modules are Harish-Chandra modules.
We also give separate necessary and sufficient conditions on k for the existence of an irreducible strict $(\mathfrak g\mathfrak k)$-module of finite type, i.e., an irreducible strict $(\mathfrak g\mathfrak k)$-module with finite $\mathfrak k$-multiplicities. In particular, under the assumptions that the intermediate subalgebra $\mathfrak k$ is reductive and $\mathfrak g$ has no simple components of types $B_n$ for $n>2$ or $F_4$, we prove a simple explicit criterion on k for the existence of an irreducible strict $(\mathfrak g\mathfrak k)$-module of finite type. It implies that, if g is simple of type $A$ or $C$, for every reductive intermediate $\mathfrak k$ there is an irreducible strict $(\mathfrak g\mathfrak k)$-module of finite type.
Key words and phrases: Complex reducive Lie algebra, $(\mathfrak g\mathfrak k)$-module, Harish-Chandra module.
Received: March 24, 2002
Bibliographic databases:
MSC: Primary 17B10; Secondary 22E46
Language: English
Citation: I. B. Penkov, V. V. Serganova, “Generalized Harish-Chandra modules”, Mosc. Math. J., 2:4 (2002), 753–767
Citation in format AMSBIB
\Bibitem{PenSer02}
\by I.~B.~Penkov, V.~V.~Serganova
\paper Generalized Harish-Chandra modules
\jour Mosc. Math.~J.
\yr 2002
\vol 2
\issue 4
\pages 753--767
\mathnet{http://mi.mathnet.ru/mmj71}
\crossref{https://doi.org/10.17323/1609-4514-2002-2-4-753-767}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1986089}
\zmath{https://zbmath.org/?q=an:1036.17005}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208593600006}
Linking options:
  • https://www.mathnet.ru/eng/mmj71
  • https://www.mathnet.ru/eng/mmj/v2/i4/p753
    Erratum
    This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:394
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024