Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2019, Volume 19, Number 1, Pages 51–76
DOI: https://doi.org/10.17323/1609-4514-2019-19-1-51-76
(Mi mmj700)
 

This article is cited in 1 scientific paper (total in 1 paper)

Regular and singular continuous time random walk in dynamic random environment

C. Boldrighinia, A. Pellegrinottib, E. A. Zhizhinac

a Istituto Nazionale di Alta Matematica (INdAM), GNFM, Unità locale Università Roma Tre, Largo S. Leonardo Murialdo, 1, 00146 Rome, Italy
b Dipartimento di Matematica e Fisica, Università di Roma Tre, Largo S. Leonardo Murialdo 1, 00146 Rome, Italy
c Institute for Information Transmission Problems, Russian Academy of Sciences
Full-text PDF Citations (1)
References:
Abstract: We consider a homogeneous continuous-time random walk (CTRW) on the lattice $\mathbb Z^{d}$, $d=1,2,\dots$, which is a kind of random trap model in a time-dependent (“dynamic”) environment. The waiting time distribution is renewed at each jump, and is given by a general probability density depending on a parameter $\eta>0$ such that the average waiting time is finite for $\eta >1$ and infinite for $\eta \in (0, 1]$. By applying analytic methods introduced in a previous paper we prove that the asymptotics of the quenched CTRW and of its annealed version are the same for all $\eta >0$ and $d\geq 1$. We also exhibit explicit formulas for the correction term to the quenched asymptotics. For the border-line case $\eta=1$ we find an explicit expression for the annealed limiting distribution, which is, to our knowledge, new.
Key words and phrases: continuous-time random walk, random traps, dynamic random environment, singular waiting time, random walk in quenched environment.
Bibliographic databases:
Document Type: Article
MSC: 60J10, 60K37, 82B41
Language: Russian
Citation: C. Boldrighini, A. Pellegrinotti, E. A. Zhizhina, “Regular and singular continuous time random walk in dynamic random environment”, Mosc. Math. J., 19:1 (2019), 51–76
Citation in format AMSBIB
\Bibitem{BolPelZhi19}
\by C.~Boldrighini, A.~Pellegrinotti, E.~A.~Zhizhina
\paper Regular and singular continuous time random walk in dynamic random environment
\jour Mosc. Math.~J.
\yr 2019
\vol 19
\issue 1
\pages 51--76
\mathnet{http://mi.mathnet.ru/mmj700}
\crossref{https://doi.org/10.17323/1609-4514-2019-19-1-51-76}
Linking options:
  • https://www.mathnet.ru/eng/mmj700
  • https://www.mathnet.ru/eng/mmj/v19/i1/p51
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:139
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024