Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2018, Volume 18, Number 4, Pages 755–785
DOI: https://doi.org/10.17323/1609-4514-2018-18-4-755-785
(Mi mmj695)
 

This article is cited in 3 scientific papers (total in 3 papers)

A polyhedral characterization of quasi-ordinary singularities

Hussein Mourtadaa, Bernd  Schoberb

a Institut Mathématique de Jussieu-Paris Rive Gauche, Université Paris 7, Bâtiment Sophie Germain, case 7012, 75205 Paris Cedex 13, France
b Johannes Gutenberg-Universität Mainz, Fachbereich 08, Staudingerweg 9, 55099 Mainz, Germany
Full-text PDF Citations (3)
References:
Abstract: Given an irreducible hypersurface singularity of dimension $d$ (defined by a polynomial $f\in K[[ \mathbf{x} ]][z]$) and the projection to the affine space defined by $K[[ \mathbf{x} ]]$, we construct an invariant which detects whether the singularity is quasi-ordinary with respect to the projection. The construction uses a weighted version of Hironaka's characteristic polyhedron and successive embeddings of the singularity in affine spaces of higher dimensions. When $ f $ is quasi-ordinary, our invariant determines the semigroup of the singularity and hence it encodes the embedded topology of the singularity $ \{ f = 0 \} $ in a neighbourhood of the origin when $ K = \mathbb{C}$ and $ f $ is complex analytic; moreover, we explain the relation between the construction and the approximate roots.
Key words and phrases: quasi-ordinary singularities, characteristic polyhedron, overweight deformations.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Hussein Mourtada, Bernd Schober, “A polyhedral characterization of quasi-ordinary singularities”, Mosc. Math. J., 18:4 (2018), 755–785
Citation in format AMSBIB
\Bibitem{MouSch18}
\by Hussein~Mourtada, Bernd ~Schober
\paper A polyhedral characterization of quasi-ordinary singularities
\jour Mosc. Math.~J.
\yr 2018
\vol 18
\issue 4
\pages 755--785
\mathnet{http://mi.mathnet.ru/mmj695}
\crossref{https://doi.org/10.17323/1609-4514-2018-18-4-755-785}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000456106700009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85060392133}
Linking options:
  • https://www.mathnet.ru/eng/mmj695
  • https://www.mathnet.ru/eng/mmj/v18/i4/p755
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:209
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024