Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2018, Volume 18, Number 4, Pages 721–737
DOI: https://doi.org/10.17323/1609-4514-2018-18-4-721-737
(Mi mmj693)
 

This article is cited in 2 scientific papers (total in 2 papers)

Standard models of degree $1$ del Pezzo fibrations

Konstantin Loginov

Laboratory of Algebraic Geometry, Faculty of Mathematics, National Research University Higher School of Economics, 119048 Moscow, Usacheva str., 6
Full-text PDF Citations (2)
References:
Abstract: We construct a standard birational model (a model that has Gorenstein canonical singularities) for the three-dimensional del Pezzo fibrations ${ \pi \colon X \longrightarrow C }$ of degree $1$ and relative Picard number $1$. We also embed the standard model into the relative weighted projective space $\mathbb{P}_C (1,1,2,3)$. Our construction works in the $G$-equivariant category where $G$ is a finite group.
Key words and phrases: minimal model program, del Pezzo fibrations, standard model.
Bibliographic databases:
Document Type: Article
MSC: 14E07
Language: English
Citation: Konstantin Loginov, “Standard models of degree $1$ del Pezzo fibrations”, Mosc. Math. J., 18:4 (2018), 721–737
Citation in format AMSBIB
\Bibitem{Log18}
\by Konstantin~Loginov
\paper Standard models of degree~$1$ del Pezzo fibrations
\jour Mosc. Math.~J.
\yr 2018
\vol 18
\issue 4
\pages 721--737
\mathnet{http://mi.mathnet.ru/mmj693}
\crossref{https://doi.org/10.17323/1609-4514-2018-18-4-721-737}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000456106700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85060370617}
Linking options:
  • https://www.mathnet.ru/eng/mmj693
  • https://www.mathnet.ru/eng/mmj/v18/i4/p721
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:249
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024