Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2018, Volume 18, Number 4, Pages 693–719
DOI: https://doi.org/10.17323/1609-4514-2018-18-4-693-719
(Mi mmj692)
 

Lagrangian subvarieties in the Chow ring of some hyperkähler varieties

Robert Laterveer

Institut de Recherche Mathématique Avancée, CNRS – Université de Strasbourg, 7 Rue René Descartes, 67084 Strasbourg CEDEX, FRANCE
References:
Abstract: Let $X$ be a hyperkähler variety, and let $Z\subset X$ be a Lagrangian subvariety. Conjecturally, $Z$ should have trivial intersection with certain parts of the Chow ring of $X$. We prove this conjecture for certain Hilbert schemes $X$ having a Lagrangian fibration, and $Z\subset X$ a general fibre of the Lagrangian fibration.
Key words and phrases: Algebraic cycles, Chow ring, motives, Bloch–Beilinson filtration, hyperkähler variety, Lagrangian subvariety, constant cycle subvariety, (Hilbert scheme of) $K3$ surface, Beauville's splitting property, multiplicative Chow–Künneth decomposition, spread of algebraic cycles.
Bibliographic databases:
Document Type: Article
MSC: 14C15, 14C25, 14C30
Language: English
Citation: Robert Laterveer, “Lagrangian subvarieties in the Chow ring of some hyperkähler varieties”, Mosc. Math. J., 18:4 (2018), 693–719
Citation in format AMSBIB
\Bibitem{Lat18}
\by Robert~Laterveer
\paper Lagrangian subvarieties in the Chow ring of some hyperk\"ahler varieties
\jour Mosc. Math.~J.
\yr 2018
\vol 18
\issue 4
\pages 693--719
\mathnet{http://mi.mathnet.ru/mmj692}
\crossref{https://doi.org/10.17323/1609-4514-2018-18-4-693-719}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000456106700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85060397927}
Linking options:
  • https://www.mathnet.ru/eng/mmj692
  • https://www.mathnet.ru/eng/mmj/v18/i4/p693
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:162
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024