|
Lagrangian subvarieties in the Chow ring of some hyperkähler varieties
Robert Laterveer Institut de Recherche Mathématique Avancée,
CNRS – Université de Strasbourg, 7 Rue René Descartes, 67084 Strasbourg CEDEX, FRANCE
Abstract:
Let $X$ be a hyperkähler variety, and let $Z\subset X$ be a Lagrangian subvariety. Conjecturally, $Z$ should have trivial intersection with certain parts of the Chow ring of $X$. We prove this conjecture for certain Hilbert schemes $X$ having a Lagrangian fibration, and $Z\subset X$ a general fibre of the Lagrangian fibration.
Key words and phrases:
Algebraic cycles, Chow ring, motives, Bloch–Beilinson filtration, hyperkähler variety, Lagrangian subvariety, constant cycle subvariety, (Hilbert scheme of) $K3$ surface, Beauville's splitting property, multiplicative Chow–Künneth decomposition, spread of algebraic cycles.
Citation:
Robert Laterveer, “Lagrangian subvarieties in the Chow ring of some hyperkähler varieties”, Mosc. Math. J., 18:4 (2018), 693–719
Linking options:
https://www.mathnet.ru/eng/mmj692 https://www.mathnet.ru/eng/mmj/v18/i4/p693
|
Statistics & downloads: |
Abstract page: | 162 | References: | 34 |
|