Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2018, Volume 18, Number 4, Pages 607–616
DOI: https://doi.org/10.17323/1609-4514-2018-18-4-607-616
(Mi mmj687)
 

This article is cited in 4 scientific papers (total in 4 papers)

Solvable extensions of nilpotent complex Lie algebras of type $\{2n,1,1\}$

C. Bartolone, A. Di Bartolo, G. Falcone

Dipartimento di Matematica e Informatica, Università di Palermo, Via Archirafi 34, I-90123 Palermo, Italy
Full-text PDF Citations (4)
References:
Abstract: We investigate derivations of nilpotent complex Lie algebras of type $\{2n,1,1\}$ with the aim to classify solvable complex Lie algebras the commutator ideals of which have codimension $1$ and are nilpotent Lie algebras of type $\{2n,1,1\}$.
Key words and phrases: solvable Lie algebras, derivations of a nilpotent Lie algebras, generalized Heisenberg algebras.
Bibliographic databases:
Document Type: Article
MSC: 17B05, 17B30
Language: English
Citation: C. Bartolone, A. Di Bartolo, G. Falcone, “Solvable extensions of nilpotent complex Lie algebras of type $\{2n,1,1\}$”, Mosc. Math. J., 18:4 (2018), 607–616
Citation in format AMSBIB
\Bibitem{BarDi Fal18}
\by C.~Bartolone, A.~Di Bartolo, G.~Falcone
\paper Solvable extensions of nilpotent complex Lie algebras of type $\{2n,1,1\}$
\jour Mosc. Math.~J.
\yr 2018
\vol 18
\issue 4
\pages 607--616
\mathnet{http://mi.mathnet.ru/mmj687}
\crossref{https://doi.org/10.17323/1609-4514-2018-18-4-607-616}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000456106700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85060377533}
Linking options:
  • https://www.mathnet.ru/eng/mmj687
  • https://www.mathnet.ru/eng/mmj/v18/i4/p607
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:118
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024