|
This article is cited in 4 scientific papers (total in 4 papers)
Solvable extensions of nilpotent complex Lie algebras of type $\{2n,1,1\}$
C. Bartolone, A. Di Bartolo, G. Falcone Dipartimento di Matematica e Informatica, Università di Palermo, Via Archirafi 34, I-90123 Palermo, Italy
Abstract:
We investigate derivations of nilpotent complex Lie algebras of type $\{2n,1,1\}$ with the aim to classify solvable complex Lie algebras the commutator ideals of which have codimension $1$ and are nilpotent Lie algebras of type $\{2n,1,1\}$.
Key words and phrases:
solvable Lie algebras, derivations of a nilpotent Lie algebras, generalized Heisenberg algebras.
Citation:
C. Bartolone, A. Di Bartolo, G. Falcone, “Solvable extensions of nilpotent complex Lie algebras of type $\{2n,1,1\}$”, Mosc. Math. J., 18:4 (2018), 607–616
Linking options:
https://www.mathnet.ru/eng/mmj687 https://www.mathnet.ru/eng/mmj/v18/i4/p607
|
Statistics & downloads: |
Abstract page: | 114 | References: | 30 |
|