Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2018, Volume 18, Number 3, Pages 517–555
DOI: https://doi.org/10.17323/1609-4514-2018-18-3-517-555
(Mi mmj685)
 

Euler isomorphism, Euler basis, and Reidemeister torsion

Mauro Spreafico

Dipartimento di matematica e fisica E. De Giorgi, Università del Salento, Lecce, Italy
References:
Abstract: The aim of these notes is to present a general algebraic setting based on the Euler isomorphism for complexes of vector spaces as in the book by Gelfand, Kapranov, and Zelevinsky, and on some self duality properties of graded vector spaces that completely characterises the combinatorial invariants of Reidemeister torsion and Reidemeister metric. The work has been inspired by papers of Farber and Farber and Turaev, who originally considered this approach to Reidemeister torsion, and by subsequent work of M. Braverman and Kappeler.
Key words and phrases: Euler isomorphism, determinant line, torsion.
Bibliographic databases:
Document Type: Article
MSC: 57Q10
Language: English
Citation: Mauro Spreafico, “Euler isomorphism, Euler basis, and Reidemeister torsion”, Mosc. Math. J., 18:3 (2018), 517–555
Citation in format AMSBIB
\Bibitem{Spr18}
\by Mauro~Spreafico
\paper Euler isomorphism, Euler basis, and Reidemeister torsion
\jour Mosc. Math.~J.
\yr 2018
\vol 18
\issue 3
\pages 517--555
\mathnet{http://mi.mathnet.ru/mmj685}
\crossref{https://doi.org/10.17323/1609-4514-2018-18-3-517-555}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000456105800006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85053831170}
Linking options:
  • https://www.mathnet.ru/eng/mmj685
  • https://www.mathnet.ru/eng/mmj/v18/i3/p517
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024