|
On the connectedness of the singular locus of the moduli space of principally polarized abelian varieties
Sebastián Reyes-Carocca, Rubí E. Rodríguez Departamento de Matemática y Estadística, Universidad de La Frontera, Avenida Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
Abstract:
Let $\mathcal{A}_g$ denote the moduli space of principally polarized abelian varieties of dimension $g \ge 3$. In this paper we prove the connectedness of the singular sublocus of $\mathcal{A}_g$ consisting of those abelian varieties which possess an involution different from $-\mathrm{id}$.
Key words and phrases:
Abelian varieties, Jacobian varieties, Group actions.
Citation:
Sebastián Reyes-Carocca, Rubí E. Rodríguez, “On the connectedness of the singular locus of the moduli space of principally polarized abelian varieties”, Mosc. Math. J., 18:3 (2018), 473–489
Linking options:
https://www.mathnet.ru/eng/mmj683 https://www.mathnet.ru/eng/mmj/v18/i3/p473
|
Statistics & downloads: |
Abstract page: | 106 | References: | 29 |
|