Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2018, Volume 18, Number 3, Pages 473–489
DOI: https://doi.org/10.17323/1609-4514-2018-18-3-473-489
(Mi mmj683)
 

On the connectedness of the singular locus of the moduli space of principally polarized abelian varieties

Sebastián Reyes-Carocca, Rubí E. Rodríguez

Departamento de Matemática y Estadística, Universidad de La Frontera, Avenida Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
References:
Abstract: Let $\mathcal{A}_g$ denote the moduli space of principally polarized abelian varieties of dimension $g \ge 3$. In this paper we prove the connectedness of the singular sublocus of $\mathcal{A}_g$ consisting of those abelian varieties which possess an involution different from $-\mathrm{id}$.
Key words and phrases: Abelian varieties, Jacobian varieties, Group actions.
Bibliographic databases:
Document Type: Article
MSC: 14K10, 14L30
Language: English
Citation: Sebastián Reyes-Carocca, Rubí E. Rodríguez, “On the connectedness of the singular locus of the moduli space of principally polarized abelian varieties”, Mosc. Math. J., 18:3 (2018), 473–489
Citation in format AMSBIB
\Bibitem{ReyRod18}
\by Sebasti\'an~Reyes-Carocca, Rub{\'\i}~E.~Rodr{\'\i}guez
\paper On the connectedness of the singular locus of the moduli space of principally polarized abelian varieties
\jour Mosc. Math.~J.
\yr 2018
\vol 18
\issue 3
\pages 473--489
\mathnet{http://mi.mathnet.ru/mmj683}
\crossref{https://doi.org/10.17323/1609-4514-2018-18-3-473-489}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000456105800004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85053841620}
Linking options:
  • https://www.mathnet.ru/eng/mmj683
  • https://www.mathnet.ru/eng/mmj/v18/i3/p473
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:106
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024