|
This article is cited in 3 scientific papers (total in 3 papers)
On $M$-functions associated with modular forms
Philippe Lebacquea, Alexey Zykinbcde a Laboratoire de Mathématiques de Besançon, UFR Sciences et techniques 16, route de Gray 25 030 Besançon, France
b Laboratoire GAATI, Université de la Polynésie française,
BP 6570 – 98702 Faa'a, Tahiti, Polynésie française
c National Research University Higher School of Economics
d AG Laboratory NRU HSE
e Institute for Information Transmission Problems of the Russian Academy of Sciences
Abstract:
Let $f$ be a primitive cusp form of weight $k$ and level $N$, let $\chi$ be a Dirichlet character of conductor coprime with $N$, and let $\mathfrak{L}(f\otimes \chi, s)$ denote either $\log L(f\otimes \chi, s)$ or $(L'/L)(f\otimes \chi, s)$. In this article we study the distribution of the values of $\mathfrak{L}$ when either $\chi$ or $f$ vary. First, for a quasi-character $\psi\colon \mathbb{C} \to \mathbb{C}^\times$ we find the limit for the average $\mathrm{Avg}_\chi \psi(L(f\otimes\chi, s))$, when $f$ is fixed and $\chi$ varies through the set of characters with prime conductor that tends to infinity. Second, we prove an equidistribution result for the values of $\mathfrak{L}(f\otimes \chi,s)$ by establishing analytic properties of the above limit function. Third, we study the limit of the harmonic average $\mathrm{Avg}^h_f \psi(L(f, s))$, when $f$ runs through the set of primitive cusp forms of given weight $k$ and level $N\to \infty$. Most of the results are obtained conditionally on the Generalized Riemann Hypothesis for $L(f\otimes\chi, s)$.
Key words and phrases:
$L$-function, cuspidal newforms, value-distribution, density function.
Citation:
Philippe Lebacque, Alexey Zykin, “On $M$-functions associated with modular forms”, Mosc. Math. J., 18:3 (2018), 437–472
Linking options:
https://www.mathnet.ru/eng/mmj682 https://www.mathnet.ru/eng/mmj/v18/i3/p437
|
Statistics & downloads: |
Abstract page: | 148 | References: | 31 |
|