Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2018, Volume 18, Number 3, Pages 437–472
DOI: https://doi.org/10.17323/1609-4514-2018-18-3-437-472
(Mi mmj682)
 

This article is cited in 3 scientific papers (total in 3 papers)

On $M$-functions associated with modular forms

Philippe Lebacquea, Alexey Zykinbcde

a Laboratoire de Mathématiques de Besançon, UFR Sciences et techniques 16, route de Gray 25 030 Besançon, France
b Laboratoire GAATI, Université de la Polynésie française, BP 6570 – 98702 Faa'a, Tahiti, Polynésie française
c National Research University Higher School of Economics
d AG Laboratory NRU HSE
e Institute for Information Transmission Problems of the Russian Academy of Sciences
Full-text PDF Citations (3)
References:
Abstract: Let $f$ be a primitive cusp form of weight $k$ and level $N$, let $\chi$ be a Dirichlet character of conductor coprime with $N$, and let $\mathfrak{L}(f\otimes \chi, s)$ denote either $\log L(f\otimes \chi, s)$ or $(L'/L)(f\otimes \chi, s)$. In this article we study the distribution of the values of $\mathfrak{L}$ when either $\chi$ or $f$ vary. First, for a quasi-character $\psi\colon \mathbb{C} \to \mathbb{C}^\times$ we find the limit for the average $\mathrm{Avg}_\chi \psi(L(f\otimes\chi, s))$, when $f$ is fixed and $\chi$ varies through the set of characters with prime conductor that tends to infinity. Second, we prove an equidistribution result for the values of $\mathfrak{L}(f\otimes \chi,s)$ by establishing analytic properties of the above limit function. Third, we study the limit of the harmonic average $\mathrm{Avg}^h_f \psi(L(f, s))$, when $f$ runs through the set of primitive cusp forms of given weight $k$ and level $N\to \infty$. Most of the results are obtained conditionally on the Generalized Riemann Hypothesis for $L(f\otimes\chi, s)$.
Key words and phrases: $L$-function, cuspidal newforms, value-distribution, density function.
Bibliographic databases:
Document Type: Article
MSC: Primary 11F11; Secondary 11M41
Language: English
Citation: Philippe Lebacque, Alexey Zykin, “On $M$-functions associated with modular forms”, Mosc. Math. J., 18:3 (2018), 437–472
Citation in format AMSBIB
\Bibitem{LebZyk18}
\by Philippe~Lebacque, Alexey~Zykin
\paper On $M$-functions associated with modular forms
\jour Mosc. Math.~J.
\yr 2018
\vol 18
\issue 3
\pages 437--472
\mathnet{http://mi.mathnet.ru/mmj682}
\crossref{https://doi.org/10.17323/1609-4514-2018-18-3-437-472}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000456105800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85053820316}
Linking options:
  • https://www.mathnet.ru/eng/mmj682
  • https://www.mathnet.ru/eng/mmj/v18/i3/p437
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024