Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2018, Volume 18, Number 3, Pages 421–436
DOI: https://doi.org/10.17323/1609-4514-2018-18-3-421-436
(Mi mmj681)
 

This article is cited in 1 scientific paper (total in 1 paper)

The groups generated by maximal sets of symmetries of Riemann surfaces and extremal quantities of their ovals

Grzegorz Gromadzki, Ewa Kozłowska-Walania

Institute of Mathematics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland
Full-text PDF Citations (1)
References:
Abstract: Given $g\geq 2$, there are formulas for the maximal number of non-conjugate symmetries of a Riemann surface of genus $g$ and the maximal number of ovals for a given number of symmetries. Here we describe the algebraic structure of the automorphism groups of Riemann surfaces, supporting such extremal configurations of symmetries, showing that they are direct products of a dihedral group and some number of cyclic groups of order $2$. This allows us to establish a deeper relation between the mentioned above quantitative (the number of symmetries) and qualitative (configurations of ovals) cases.
Key words and phrases: automorphisms of Riemann surfaces, symmetric Riemann surfaces, real forms of complex algebraic curves, Fuchsian and NEC groups, ovals of symmetries of Riemann surfaces, separability of symmetries, Harnack–Weichold conditions.
Bibliographic databases:
Document Type: Article
MSC: Primary 30F99; Secondary 14H37, 20F
Language: English
Citation: Grzegorz Gromadzki, Ewa Kozłowska-Walania, “The groups generated by maximal sets of symmetries of Riemann surfaces and extremal quantities of their ovals”, Mosc. Math. J., 18:3 (2018), 421–436
Citation in format AMSBIB
\Bibitem{GroKoz18}
\by Grzegorz~Gromadzki, Ewa~Koz\l owska-Walania
\paper The groups generated by maximal sets of symmetries of Riemann surfaces and extremal quantities of their ovals
\jour Mosc. Math.~J.
\yr 2018
\vol 18
\issue 3
\pages 421--436
\mathnet{http://mi.mathnet.ru/mmj681}
\crossref{https://doi.org/10.17323/1609-4514-2018-18-3-421-436}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000456105800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85053846089}
Linking options:
  • https://www.mathnet.ru/eng/mmj681
  • https://www.mathnet.ru/eng/mmj/v18/i3/p421
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:139
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024