|
This article is cited in 1 scientific paper (total in 1 paper)
A short note on cohomological dimension
Kamal Bahmanpourab, Jafar A'zamia, Ghader Ghasemia a Faculty of Sciences, Department of Mathematics, University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran
b School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box. 19395-5746, Tehran, Iran
Abstract:
Let $(R,\mathfrak m)$ be a Noehterian regular local ring and $\mathfrak p$ be a prime ideal of $R$. In this paper it is shown that if the set $S:=\{n\in\mathbb N\colon R/\mathfrak p^{(n)}\ \text{is Cohen--Macaulay}\}$ is infinite, then $\mathrm{cd}(\mathfrak p,R)=\mathrm{height}(\mathfrak p)$.
Key words and phrases:
cohomological dimension, Krull dimension, local cohomology, regular ring, symbolic power.
Citation:
Kamal Bahmanpour, Jafar A'zami, Ghader Ghasemi, “A short note on cohomological dimension”, Mosc. Math. J., 18:2 (2018), 205–210
Linking options:
https://www.mathnet.ru/eng/mmj671 https://www.mathnet.ru/eng/mmj/v18/i2/p205
|
|