Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2018, Volume 18, Number 1, Pages 163–179
DOI: https://doi.org/10.17323/1609-4514-2018-18-1-163-179
(Mi mmj667)
 

Stable singularities and stable leaves of holomorphic foliations in dimension two

V. Leóna, B. Scárduab

a ILACVN — CICN, Universidade Federal da Integração Latino-Americana, Parque tecnológico de Itaipu, Foz do Iguaçu-PR, 85867-970 – Brazil
b Instituto de Matemática — Universidade Federal do Rio de Janeiro, CP. 68530-Rio de Janeiro-RJ, 21945-970 – Brazil
References:
Abstract: We consider germs of holomorphic foliations with an isolated singularity at the origin $0\in\mathbb C^2$. We introduce a notion of Lstability for the singularity, similar to Lyapunov stability. We prove that $L$-stability is equivalent to the existence of a holomorphic first integral, or the foliation is a real logarithmic foliation. A notion of $L$-stability is also naturally introduced for a leaf of a holomorphic foliation in a complex surface. We prove that the holonomy groups of L-stable leaves are abelian, of a suitable type. This implies the existence of local closed meromorphic $1$-forms defining the foliation, in a neighborhood of compact $L$-stable leaves. Finally, we consider the case of foliations in the complex projective plane. We prove that a foliation on$\mathbb CP^2$ admitting a $L$-stable invariant algebraic curve is the pull-back by some polynomial map of a suitable linear logarithmic foliation.
Key words and phrases: holomorphic foliation, Lyapunov stability, singularity.
Bibliographic databases:
Document Type: Article
MSC: Primary 37F75, 57R30; Secondary 32M25, 32S65
Language: English
Citation: V. León, B. Scárdua, “Stable singularities and stable leaves of holomorphic foliations in dimension two”, Mosc. Math. J., 18:1 (2018), 163–179
Citation in format AMSBIB
\Bibitem{LeoSca18}
\by V.~Le\'on, B.~Sc\'ardua
\paper Stable singularities and stable leaves of holomorphic foliations in dimension two
\jour Mosc. Math.~J.
\yr 2018
\vol 18
\issue 1
\pages 163--179
\mathnet{http://mi.mathnet.ru/mmj667}
\crossref{https://doi.org/10.17323/1609-4514-2018-18-1-163-179}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000429074200008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85044060274}
Linking options:
  • https://www.mathnet.ru/eng/mmj667
  • https://www.mathnet.ru/eng/mmj/v18/i1/p163
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:141
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024