Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2018, Volume 18, Number 1, Pages 149–162
DOI: https://doi.org/10.17323/1609-4514-2018-18-1-149-162
(Mi mmj666)
 

This article is cited in 2 scientific papers (total in 2 papers)

A spectral sequence for homology of invariant group chains

Rolando Jimeneza, Angelina López Madrigala, Quitzeh Morales Meléndezb

a Instituto de Matemáticas, Unidad Oaxaca, Universidad Nacional Autónoma de México, León 2, 68000 Oaxaca de Juárez, Oaxaca, México
b CONACYT — Universidad Pedagógica Nacional, unidad 201 Camino a la Zanjita S/N, Col. Noche Buena, Santa Cruz Xoxocotlán, Oaxaca. C.P. 71230
Full-text PDF Citations (2)
References:
Abstract: Let $Q$ be a finite group acting on a group $G$ by group automorphisms, $C(G)$ the bar complex and $H^Q_*(G,A)$ the homology of invariant group chains defined in K. Knudson's paper “The homology of invariant group chains”. In this paper we construct a spectral sequence converging to $H_*(Q,C(G)\otimes A)$ whose second term is isomorphic to $H^Q_*(G,A)$ for some coefficients. When this spectral sequence collapses this yields an isomorphism $H^Q_*(G,A)\cong H_*(Q,C(G)\otimes A)$, which we use to compute this homology for some cases. The construction uses a decomposition of the bar complex $C_*(G) $ in terms of the induction from some isotropy groups to the group $Q$. We also decompose the subcomplex of invariants $C_*(G)^Q$ by $Q$-orbits and use this to compute the invariant $1$-homology $H^Q_1(G,\mathbb Z)$ for some cases.
Key words and phrases: bar complex, homology of invariant group chains, spectral sequences.
Bibliographic databases:
Document Type: Article
MSC: Primary 55N25, 55T05; Secondary 18G40, 18G35
Language: English
Citation: Rolando Jimenez, Angelina López Madrigal, Quitzeh Morales Meléndez, “A spectral sequence for homology of invariant group chains”, Mosc. Math. J., 18:1 (2018), 149–162
Citation in format AMSBIB
\Bibitem{JimLopMor18}
\by Rolando~Jimenez, Angelina~L\'opez Madrigal, Quitzeh~Morales Mel\'endez
\paper A spectral sequence for homology of invariant group chains
\jour Mosc. Math.~J.
\yr 2018
\vol 18
\issue 1
\pages 149--162
\mathnet{http://mi.mathnet.ru/mmj666}
\crossref{https://doi.org/10.17323/1609-4514-2018-18-1-149-162}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000429074200007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85044094731}
Linking options:
  • https://www.mathnet.ru/eng/mmj666
  • https://www.mathnet.ru/eng/mmj/v18/i1/p149
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:401
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024