Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2018, Volume 18, Number 1, Pages 63–83
DOI: https://doi.org/10.17323/1609-4514-2018-18-1-63-83
(Mi mmj662)
 

Genera of non-algebraic leaves of polynomial foliations of $\mathbb C^2$

Nataliya Goncharukab, Yury Kudryashovab

a Higher School of Economics, Department of Mathematics, 20 Myasnitskaya street, Moscow 101000, Russia
b Cornell University, College of Arts and Sciences, Department of Mathematics, 310 Mallot Hall, Ithaca, NY, 14853, US
References:
Abstract: In this article, we prove two results. First, we construct a dense subset in the space of polynomial foliations of degree $n$ such that each foliation from this subset has a leaf with at least $\frac{(n+1)(n+2)}2-4$ handles. Next, we prove that for a generic foliation invariant under the map $(x,y)\mapsto(x,-y)$ all leaves (except for a finite set of algebraic leaves) have infinitely many handles.
Key words and phrases: Riemann surfaces, complex foliations, polynomial foliations, complex limit cycles.
Bibliographic databases:
Document Type: Article
MSC: Primary 37F75; Secondary 32M25
Language: English
Citation: Nataliya Goncharuk, Yury Kudryashov, “Genera of non-algebraic leaves of polynomial foliations of $\mathbb C^2$”, Mosc. Math. J., 18:1 (2018), 63–83
Citation in format AMSBIB
\Bibitem{GonKud18}
\by Nataliya~Goncharuk, Yury~Kudryashov
\paper Genera of non-algebraic leaves of polynomial foliations of~$\mathbb C^2$
\jour Mosc. Math.~J.
\yr 2018
\vol 18
\issue 1
\pages 63--83
\mathnet{http://mi.mathnet.ru/mmj662}
\crossref{https://doi.org/10.17323/1609-4514-2018-18-1-63-83}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000429074200003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85044044578}
Linking options:
  • https://www.mathnet.ru/eng/mmj662
  • https://www.mathnet.ru/eng/mmj/v18/i1/p63
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:181
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024