Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2017, Volume 17, Number 4, Pages 691–698
DOI: https://doi.org/10.17323/1609-4514-2017-17-4-691-698
(Mi mmj653)
 

This article is cited in 3 scientific papers (total in 3 papers)

Permutation-equivariant quantum K-theory I. Definitions. Elementary K-theory of $\overline M_{0,n}/S_n$

Alexander Givental

Department of Mathematics, University of California Berkeley, Berkeley CA 94720, USA
Full-text PDF Citations (3)
References:
Abstract: K-theoretic Gromov–Witten (GW) invariants of a compact Kähler manifold $X$ are defined as super-dimensions of sheaf cohomology of interesting bundles over moduli spaces of $n$-pointed holomorphic curves in $X$. In this paper, we introduce K-theoretic GW-invariants cognizant of the $S_n$-module structure on the sheaf cohomology, induced by renumbering of the marked points, and compute some of these invariants for $X=\mathrm{pt}$.
Key words and phrases: K-theory, Gromov–Witten invariants, Schur–Weyl reciprocity, Deligne–Mumford spaces, Veronese curves.
Bibliographic databases:
Document Type: Article
MSC: 14N35
Language: English
Citation: Alexander Givental, “Permutation-equivariant quantum K-theory I. Definitions. Elementary K-theory of $\overline M_{0,n}/S_n$”, Mosc. Math. J., 17:4 (2017), 691–698
Citation in format AMSBIB
\Bibitem{Giv17}
\by Alexander~Givental
\paper Permutation-equivariant quantum K-theory~I. Definitions. Elementary K-theory of $\overline M_{0,n}/S_n$
\jour Mosc. Math.~J.
\yr 2017
\vol 17
\issue 4
\pages 691--698
\mathnet{http://mi.mathnet.ru/mmj653}
\crossref{https://doi.org/10.17323/1609-4514-2017-17-4-691-698}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416897600006}
Linking options:
  • https://www.mathnet.ru/eng/mmj653
  • https://www.mathnet.ru/eng/mmj/v17/i4/p691
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024