Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2017, Volume 17, Number 4, Pages 635–666
DOI: https://doi.org/10.17323/1609-4514-2017-17-4-635-666
(Mi mmj651)
 

This article is cited in 3 scientific papers (total in 3 papers)

Cherednik and Hecke algebras of varieties with a finite group action

Pavel Etingof

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Full-text PDF Citations (3)
References:
Abstract: Let $G$ be a finite group of linear transformations of a finite dimensional complex vector space $V$. To this data one can attach a family of algebras $H_{t,c}(V,G)$, parametrized by complex numbers $t$ and conjugation invariant functions $c$ on the set of complex reflections in $G$, which are called rational Cherednik algebras. These algebras have been studied for over 15 years and revealed a rich structure and deep connections with algebraic geometry, representation theory, and combinatorics. In this paper, we define global analogs of Cherednik algebras, attached to any smooth algebraic or analytic variety $X$ with a finite group $G$ of automorphisms of $X$. We show that many interesting properties of Cherednik algebras (such as the PBW theorem, universal deformation property, relation to Calogero–Moser spaces, action on quasiinvariants) still hold in the global case, and give several interesting examples. Then we define the KZ functor for global Cherednik algebras, and use it to define (in the case $\pi_2(X)\otimes\mathbb Q=0$) a flat deformation of the orbifold fundamental group of the orbifold $X/G$, which we call the Hecke algebra of $X/G$. This includes usual, affine, and double affine Hecke algebras for Weyl groups, Hecke algebras of complex reflection groups, as well as many new examples.
Key words and phrases: Cherednik algebra, reflection hypersurface, Hecke algebra, variety with a finite group action.
Bibliographic databases:
Document Type: Article
MSC: 20C08, 33D80
Language: English
Citation: Pavel Etingof, “Cherednik and Hecke algebras of varieties with a finite group action”, Mosc. Math. J., 17:4 (2017), 635–666
Citation in format AMSBIB
\Bibitem{Eti17}
\by Pavel~Etingof
\paper Cherednik and Hecke algebras of varieties with a~finite group action
\jour Mosc. Math.~J.
\yr 2017
\vol 17
\issue 4
\pages 635--666
\mathnet{http://mi.mathnet.ru/mmj651}
\crossref{https://doi.org/10.17323/1609-4514-2017-17-4-635-666}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416897600004}
Linking options:
  • https://www.mathnet.ru/eng/mmj651
  • https://www.mathnet.ru/eng/mmj/v17/i4/p635
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:168
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024