Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2002, Volume 2, Number 3, Pages 567–588
DOI: https://doi.org/10.17323/1609-4514-2002-2-3-567-588
(Mi mmj64)
 

This article is cited in 32 scientific papers (total in 32 papers)

$q$-characters of the tensor products in $\mathbf{sl}_2$-case

B. L. Feigina, E. B. Feiginb

a L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
b Independent University of Moscow
Full-text PDF Citations (32)
References:
Abstract: Let $\pi,\dots,\pi_n$ be irreducible finite-dimensional $\mathbf{sl}_2$-modules. Using the theory of representations of current algebras, we introduce several ways to construct a $q$-grading on $\pi_1\otimes\dots\otimes\pi_n$. We study the corresponding graded modules and prove that they are essentially the same.
Key words and phrases: Universal enveloping algebra, representation theory, current algebra, Gordon's formula.
Received: April 14, 2002
Bibliographic databases:
MSC: Primary 05A30; Secondary 17B35
Language: English
Citation: B. L. Feigin, E. B. Feigin, “$q$-characters of the tensor products in $\mathbf{sl}_2$-case”, Mosc. Math. J., 2:3 (2002), 567–588
Citation in format AMSBIB
\Bibitem{FeiFei02}
\by B.~L.~Feigin, E.~B.~Feigin
\paper $q$-characters of the tensor products in $\mathbf{sl}_2$-case
\jour Mosc. Math.~J.
\yr 2002
\vol 2
\issue 3
\pages 567--588
\mathnet{http://mi.mathnet.ru/mmj64}
\crossref{https://doi.org/10.17323/1609-4514-2002-2-3-567-588}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1988973}
\zmath{https://zbmath.org/?q=an:1027.05007}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208593500005}
Linking options:
  • https://www.mathnet.ru/eng/mmj64
  • https://www.mathnet.ru/eng/mmj/v2/i3/p567
  • This publication is cited in the following 32 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:498
    References:82
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024