|
This article is cited in 5 scientific papers (total in 5 papers)
Laplace-type integral representations of the generalized Bessel function and of the Dunkl kernel of type $B_2$
Béchir Amria, Nizar Demnib a Université Tunis El Manar, Faculté des sciences de Tunis, Laboratoire d'Analyse Mathématique et Applications, LR11ES11, 2092 El Manar I, Tunisie
b IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France
Abstract:
In this paper, we derive Laplace-type integral representations for both the generalized Bessel function and the Dunkl kernel associated with the rank two root system of type $B_2$.
The derivation of the first one elaborates on the integral representation of the generalized Bessel function proved by the second named author through the modified Bessel function of the first kind. In particular, we recover an expression of the density of the Duistermaat–Heckman measure for the dihedral group of order eight. As to the integral representation of the corresponding Dunkl kernel, it follows from an application of the shift principle to the generalized Bessel function.
Key words and phrases:
Dunkl kernel, generalized Bessel function, Laplace-type integral representation, Duistermaat–Heckman measure.
Received: November 21, 2016; in revised form March 1, 2017
Citation:
Béchir Amri, Nizar Demni, “Laplace-type integral representations of the generalized Bessel function and of the Dunkl kernel of type $B_2$”, Mosc. Math. J., 17:2 (2017), 175–190
Linking options:
https://www.mathnet.ru/eng/mmj634 https://www.mathnet.ru/eng/mmj/v17/i2/p175
|
Statistics & downloads: |
Abstract page: | 164 | References: | 45 |
|