Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2017, Volume 17, Number 1, Pages 1–13
DOI: https://doi.org/10.17323/1609-4514-2017-17-1-1-13
(Mi mmj622)
 

This article is cited in 7 scientific papers (total in 7 papers)

Double ramification cycles and the $n$-point function for the moduli space of curves

Alexandr Buryakab

a Department of Mathematics, ETH Zürich, Switzerland
b Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Russian Federation
Full-text PDF Citations (7)
References:
Abstract: In this paper, using the formula for the integrals of the $\psi$-classes over the double ramification cycles found by S. Shadrin, L. Spitz, D. Zvonkine and the author, we derive a new explicit formula for the $n$-point function of the intersection numbers on the moduli space of curves.
Key words and phrases: moduli space of curves, intersection numbers.
Funding agency Grant number
Russian Science Foundation 16-11-10260
The author was supported by grant Russian Science Foundation N 16-11-10260, project “Geometry and mathematical physics of integrable systems”. We are grateful to R. Pandharipande and S. Shadrin for useful discussions and to the anonymous referee for a number of suggestions that helped us to improve the exposition of the paper.
Received: May 24, 2016; in revised form November 3, 2016
Bibliographic databases:
Document Type: Article
MSC: Primary 14H10; Secondary 14C17
Language: English
Citation: Alexandr Buryak, “Double ramification cycles and the $n$-point function for the moduli space of curves”, Mosc. Math. J., 17:1 (2017), 1–13
Citation in format AMSBIB
\Bibitem{Bur17}
\by Alexandr~Buryak
\paper Double ramification cycles and the $n$-point function for the moduli space of curves
\jour Mosc. Math.~J.
\yr 2017
\vol 17
\issue 1
\pages 1--13
\mathnet{http://mi.mathnet.ru/mmj622}
\crossref{https://doi.org/10.17323/1609-4514-2017-17-1-1-13}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3634517}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000402641900001}
Linking options:
  • https://www.mathnet.ru/eng/mmj622
  • https://www.mathnet.ru/eng/mmj/v17/i1/p1
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:272
    Full-text PDF :1
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024