Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2016, Volume 16, Number 4, Pages 751–765
DOI: https://doi.org/10.17323/1609-4514-2016-16-4-751-765
(Mi mmj620)
 

This article is cited in 5 scientific papers (total in 5 papers)

Equivariant versions of higher order orbifold Euler characteristics

S. M. Gusein-Zadea, I. Luengob, A. Melle-Hernándezb

a Moscow State University, Faculty of Mathematics and Mechanics, GSP-1, Moscow, 119991, Russia
b ICMAT (CSIC-UAM-UC3M-UCM); Complutense University of Madrid, Dept. of Algebra, Madrid, 28040, Spain
Full-text PDF Citations (5)
References:
Abstract: There are (at least) two different approaches to define an equivariant analogue of the Euler characteristic for a space with a finite group action. The first one defines it as an element of the Burnside ring of the group. The second approach emerged from physics and includes the orbifold Euler characteristic and its higher order versions. Here we give a way to merge the two approaches together defining (in a certain setting) higher order Euler characteristics with values in the Burnside ring of a group. We give Macdonald type equations for these invariants. We also offer generalized (“motivic”) versions of these invariants and formulate Macdonald type equations for them as well.
Key words and phrases: finite group actions, orbifold Euler characteristic, Burnside ring, complex quasi-projective varieties, wreath products, generating series.
Funding agency Grant number
Russian Science Foundation 16-11-10018
Ministerio de Economía y Competitividad MTM2013-45710-C02-02-P
The work of the first named author (Sections 1, 2 and 4) was supported by the grant 16-11-10018 of the Russian Science Foundation. The second and third mentioned authors were supprted in part by the grant MTM2013-45710-C02-02-P.
Received: June 5, 2016; in revised form June 30, 2016
Bibliographic databases:
Document Type: Article
MSC: 55M35, 32Q55, 19A22
Language: English
Citation: S. M. Gusein-Zade, I. Luengo, A. Melle-Hernández, “Equivariant versions of higher order orbifold Euler characteristics”, Mosc. Math. J., 16:4 (2016), 751–765
Citation in format AMSBIB
\Bibitem{GusLueMel16}
\by S.~M.~Gusein-Zade, I.~Luengo, A.~Melle-Hern\'andez
\paper Equivariant versions of higher order orbifold Euler characteristics
\jour Mosc. Math.~J.
\yr 2016
\vol 16
\issue 4
\pages 751--765
\mathnet{http://mi.mathnet.ru/mmj620}
\crossref{https://doi.org/10.17323/1609-4514-2016-16-4-751-765}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3598506}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391211000010}
Linking options:
  • https://www.mathnet.ru/eng/mmj620
  • https://www.mathnet.ru/eng/mmj/v16/i4/p751
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:211
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024