Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2002, Volume 2, Number 3, Pages 533–553
DOI: https://doi.org/10.17323/1609-4514-2002-2-3-533-553
(Mi mmj62)
 

This article is cited in 12 scientific papers (total in 12 papers)

Normalized intertwining operators and nilpotent elements in the Langlands dual group

A. Braverman, D. A. Kazhdan

Department of Mathematics, Harvard University
Full-text PDF Citations (12)
References:
Abstract: Let $F$ be a local non-archimedean field and $\mathbf G$ be a split reductive group over $F$ whose derived group is simply connected. Set $G=\mathbf G(F)$. Let also $\psi\colon F\to\mathbb C^\times$ be a nontrivial additive character of $F$. For two parabolic subgroups $P$$Q$ in $G$ with the same Levi component $M$, we construct an explicit unitary isomorphism $\mathcal F_{P,Q,\psi}\colon L^2(G/[P,P])\overset\sim\to L^2(G/[Q,Q])$ commuting with the natural actions of the group $G\times M/[M,M]$ on both sides. In some special cases, $\mathcal F_{P,Q,\psi}$ is the standard Fourier transform. The crucial ingredient in the definition is the action of the principal $\mathfrak{sl}_2$-subalgebra in the Langlands dual Lie algebra $\mathfrak m^\vee$ on the nilpotent radical a $\mathfrak u_\mathfrak p^\vee$ of the Langlands dual parabolic.
For $M$ as above, we use the operators $\mathcal F_{P,Q,\psi}$ to define a Schwartz space $S(G,M)$. This space contains the space $C_c{(G/[P,P])}$ of locally constant compactly supported functions on $G/[P,P]$ for every $P$ for which $M$ is a Levi component (but does not depend on $P$). We compute the space of spherical vectors in $S(G,M)$ and study its global analogue.
Finally, we apply the above results in order to give an alternative treatment of automorphic $L$-functions associated with standard representations of classical groups.
Key words and phrases: Intertwining operators, principal nilpotent, automorphic $L$-functions.
Received: May 18, 2002
Bibliographic databases:
MSC: 22E50, 22E55
Language: English
Citation: A. Braverman, D. A. Kazhdan, “Normalized intertwining operators and nilpotent elements in the Langlands dual group”, Mosc. Math. J., 2:3 (2002), 533–553
Citation in format AMSBIB
\Bibitem{BraKaz02}
\by A.~Braverman, D.~A.~Kazhdan
\paper Normalized intertwining operators and nilpotent elements in the Langlands dual group
\jour Mosc. Math.~J.
\yr 2002
\vol 2
\issue 3
\pages 533--553
\mathnet{http://mi.mathnet.ru/mmj62}
\crossref{https://doi.org/10.17323/1609-4514-2002-2-3-533-553}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1988971}
\zmath{https://zbmath.org/?q=an:1022.22015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208593500003}
Linking options:
  • https://www.mathnet.ru/eng/mmj62
  • https://www.mathnet.ru/eng/mmj/v2/i3/p533
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:300
    References:75
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024