Loading [MathJax]/jax/output/CommonHTML/jax.js
Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2002, Volume 2, Number 3, Pages 533–553
DOI: https://doi.org/10.17323/1609-4514-2002-2-3-533-553
(Mi mmj62)
 

This article is cited in 14 scientific papers (total in 14 papers)

Normalized intertwining operators and nilpotent elements in the Langlands dual group

A. Braverman, D. A. Kazhdan

Department of Mathematics, Harvard University
Full-text PDF Citations (14)
References:
Abstract: Let F be a local non-archimedean field and G be a split reductive group over F whose derived group is simply connected. Set G=G(F). Let also ψ:FC× be a nontrivial additive character of F. For two parabolic subgroups PQ in G with the same Levi component M, we construct an explicit unitary isomorphism FP,Q,ψ:L2(G/[P,P])L2(G/[Q,Q]) commuting with the natural actions of the group G×M/[M,M] on both sides. In some special cases, FP,Q,ψ is the standard Fourier transform. The crucial ingredient in the definition is the action of the principal sl2-subalgebra in the Langlands dual Lie algebra m on the nilpotent radical a up of the Langlands dual parabolic.
For M as above, we use the operators FP,Q,ψ to define a Schwartz space S(G,M). This space contains the space Cc(G/[P,P]) of locally constant compactly supported functions on G/[P,P] for every P for which M is a Levi component (but does not depend on P). We compute the space of spherical vectors in S(G,M) and study its global analogue.
Finally, we apply the above results in order to give an alternative treatment of automorphic L-functions associated with standard representations of classical groups.
Key words and phrases: Intertwining operators, principal nilpotent, automorphic L-functions.
Received: May 18, 2002
Bibliographic databases:
MSC: 22E50, 22E55
Language: English
Citation: A. Braverman, D. A. Kazhdan, “Normalized intertwining operators and nilpotent elements in the Langlands dual group”, Mosc. Math. J., 2:3 (2002), 533–553
Citation in format AMSBIB
\Bibitem{BraKaz02}
\by A.~Braverman, D.~A.~Kazhdan
\paper Normalized intertwining operators and nilpotent elements in the Langlands dual group
\jour Mosc. Math.~J.
\yr 2002
\vol 2
\issue 3
\pages 533--553
\mathnet{http://mi.mathnet.ru/mmj62}
\crossref{https://doi.org/10.17323/1609-4514-2002-2-3-533-553}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1988971}
\zmath{https://zbmath.org/?q=an:1022.22015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208593500003}
Linking options:
  • https://www.mathnet.ru/eng/mmj62
  • https://www.mathnet.ru/eng/mmj/v2/i3/p533
  • This publication is cited in the following 14 articles:
    1. Vladimir Dobrev, “Langlands Duality and Invariant Differential Operators”, Mathematics, 13:5 (2025), 855  crossref
    2. Miao Gu, “Automorphic-twisted summation formulae for pairs of quadratic spaces”, Represent. Theory, 29:6 (2025), 151  crossref
    3. Dihua Jiang, Zhilin Luo, Lei Zhang, “Harmonic Analysis and Gamma Functions on Symplectic Groups”, Memoirs of the AMS, 295:1473 (2024)  crossref
    4. Caihua Luo, “Holomorphy of normalized intertwining operators for certain induced representations”, Math. Ann., 2023  crossref
    5. Freydoon Shahidi, William Sokurski, “On the resolution of reductive monoids and multiplicativity of γ-factors”, Journal of Number Theory, 240 (2022), 404  crossref
    6. Jayce Robert Getz, Baiying Liu, “A refined Poisson summation formula for certain Braverman-Kazhdan spaces”, Sci. China Math., 64:6 (2021), 1127  crossref
    7. Getz J.R., Liu B., “a Summation Formula For Triples of Quadratic Spaces”, Adv. Math., 347 (2019), 150–191  crossref  mathscinet  zmath  isi  scopus
    8. Pollack A., “Unramified Godement-Jacquet Theory For the Spin Similitude Group”, J. Ramanujan Math. Soc., 33:3 (2018), 249–282  mathscinet  isi
    9. Li W.-W., “Zeta Integrals, Schwartz Spaces and Local Functional Equations Preface”: Li, WW, Zeta Integrals, Schwartz Spaces and Local Functional Equations, Lect. Notes Math., Lecture Notes in Mathematics, 2228, Springer International Publishing Ag, 2018, V+  mathscinet  isi
    10. Wen-Wei Li, Lecture Notes in Mathematics, 2228, Zeta Integrals, Schwartz Spaces and Local Functional Equations, 2018, 93  crossref
    11. Wen-Wei Li, Lecture Notes in Mathematics, 2228, Zeta Integrals, Schwartz Spaces and Local Functional Equations, 2018, 1  crossref
    12. Wen-Wei Li, Lecture Notes in Mathematics, 2228, Zeta Integrals, Schwartz Spaces and Local Functional Equations, 2018, 115  crossref
    13. Sakellaridis Y., “Spherical Functions on Spherical Varieties”, Am. J. Math., 135:5 (2013), 1291–1381  crossref  mathscinet  zmath  isi
    14. Sakellaridis Y., “Spherical Varieties and Integral Representations of l-Functions”, Algebr. Number Theory, 6:4 (2012), 611–667  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:329
    References:88
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025