Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2016, Volume 16, Number 4, Pages 659–674
DOI: https://doi.org/10.17323/1609-4514-2016-16-4-659-674
(Mi mmj615)
 

This article is cited in 2 scientific papers (total in 2 papers)

Automorphisms of non-cyclic $p$-gonal Riemann surfaces

Antonio F. Costaa, Ruben A. Hidalgob

a Departamento de Matemáticas Fundamentales, Facultad de Ciencias, UNED, 28040 Madrid, Spain
b Departamento de Matemática y Estadística, Universidad de La Frontera, Casilla 54-D, 4780000 Temuco, Chile
Full-text PDF Citations (2)
References:
Abstract: In this paper we prove that the order of a holomorphic automorphism of a non-cyclic $p$-gonal compact Riemann surface $S$ of genus $g>(p-1)^2$ is bounded above by $2(g+p-1)$. We also show that this maximal order is attained for infinitely many genera. This generalises the similar result for the particular case $p=3$ recently obtained by Costa-Izquierdo. Moreover, we also observe that the full group of holomorphic automorphisms of $S$ is either the trivial group or is a finite cyclic group or a dihedral group or one of the Platonic groups $\mathcal A_4$, $\mathcal A_5$ and $\Sigma_4$. Examples in each case are also provided. If $S$ admits a holomorphic automorphism of order $2(g+p-1)$, then its full group of automorphisms is the cyclic group generated by it and every $p$-gonal map of $S$ is necessarily simply branched.
Finally, we note that each pair $(S,\pi)$, where $S$ is a non-cyclic $p$-gonal Riemann surface and $\pi$ is a $p$-gonal map, can be defined over its field of moduli. Also, if the group of automorphisms of $S$ is different from a non-trivial cyclic group and $g>(p-1)^2$, then $S$ can be also be defined over its field of moduli.
Key words and phrases: Riemann surface, Fuchsian group, automorphisms.
Funding agency Grant number
FONDECYT 1150003
CONICYT Anillo ACT1415 PIA
Spanish Ministry of Economy MTM2014-55812
Supported in part by Project FONDECYT 1150003, Anillo ACT1415 PIA CONICYT, and Project of Spanish Ministry of Economy MTM2014-55812.
Received: August 26, 2015; in revised form March 15, 2016
Bibliographic databases:
Document Type: Article
MSC: 30F10, 14H37
Language: English
Citation: Antonio F. Costa, Ruben A. Hidalgo, “Automorphisms of non-cyclic $p$-gonal Riemann surfaces”, Mosc. Math. J., 16:4 (2016), 659–674
Citation in format AMSBIB
\Bibitem{CosHid16}
\by Antonio~F.~Costa, Ruben~A.~Hidalgo
\paper Automorphisms of non-cyclic $p$-gonal Riemann surfaces
\jour Mosc. Math.~J.
\yr 2016
\vol 16
\issue 4
\pages 659--674
\mathnet{http://mi.mathnet.ru/mmj615}
\crossref{https://doi.org/10.17323/1609-4514-2016-16-4-659-674}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3598501}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391211000005}
Linking options:
  • https://www.mathnet.ru/eng/mmj615
  • https://www.mathnet.ru/eng/mmj/v16/i4/p659
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:164
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024