Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2016, Volume 16, Number 4, Pages 651–658
DOI: https://doi.org/10.17323/1609-4514-2016-16-4-651-658
(Mi mmj614)
 

This article is cited in 5 scientific papers (total in 5 papers)

Fundamental group and pluridifferentials on compact Kähler manifolds

Yohan Brunebarbea, Frédéric Campanabcd

a Ecole Polytechnique Fédérale de Lausanne, Lausanne, Chaire de Géométrie, Bâtiment MA, Station 8, CH 1015 Lausanne, Suisse
b Institut Elie Cartan, Université de Lorraine, 64, Boulevard des Aiguilletes, 54506-Vandoeuvre-les-Nancy, France
c Institut Universitaire de France
d KIAS (Seoul, South Korea)
Full-text PDF Citations (5)
References:
Abstract: A compact Kähler manifold $X$ is shown to be simply connected if its ‘symmetric cotangent algebra’ is trivial. Conjecturally, such a manifold should even be rationally connected. The relative version is also shown: a proper surjective connected holomorphic map $f\colon X\to S$ between connected manifolds induces an isomorphism of fundamental groups if its smooth fibres are as above, and if $X$ is Kähler.
Key words and phrases: fundamental group, rationally connected manifolds, symmetric differentials, $L^2$ cohomology.
Received: October 26, 2015; in revised form June 5, 2016
Bibliographic databases:
Document Type: Article
Language: English
Citation: Yohan Brunebarbe, Frédéric Campana, “Fundamental group and pluridifferentials on compact Kähler manifolds”, Mosc. Math. J., 16:4 (2016), 651–658
Citation in format AMSBIB
\Bibitem{BruCam16}
\by Yohan~Brunebarbe, Fr\'ed\'eric~Campana
\paper Fundamental group and pluridifferentials on compact K\"ahler manifolds
\jour Mosc. Math.~J.
\yr 2016
\vol 16
\issue 4
\pages 651--658
\mathnet{http://mi.mathnet.ru/mmj614}
\crossref{https://doi.org/10.17323/1609-4514-2016-16-4-651-658}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3598500}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391211000004}
Linking options:
  • https://www.mathnet.ru/eng/mmj614
  • https://www.mathnet.ru/eng/mmj/v16/i4/p651
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:172
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024