Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2016, Volume 16, Number 4, Pages 621–640
DOI: https://doi.org/10.17323/1609-4514-2016-16-4-621-640
(Mi mmj612)
 

Random walk in dynamic random environment with long-range space correlations

C. Boldrighiniab, R. A. Minlosc, A. Pellegrinottib

a Istituto Nazionale di Alta Matematica (INdAM)
b Dipartimento di Matematica e Fisica, Università di Roma Tre, Largo S. Leonardo Murialdo 1, 00146 Rome, Italy
c Institute for Problems of Information Transmission, Russian Academy of Sciences
References:
Abstract: Models of random walks (RW) in dynamic random environment (RE) are usually considered under some space-time mixing conditions with sufficient decay. We study a discrete-time model on $\mathbb Z$ in an environment independent in time, but with non-absolutely summable space correlations. We show that an a.-s. quenched Central Limit Theorem (CLT) holds, with the same leading term as in the uncorrelated case, and the same order of decay of the first correction. Some conclusions are drawn on the type of correlations that could modify the leading terms of the CLT asymptotics.
Key words and phrases: random walks, random environment, central limit theorem, correlations.
Funding agency Grant number
Istituto Nazionale di Alta Matematica "Francesco Severi"
M.U.R.S.T.
Sapienza Università di Roma
Russian Foundation for Basic Research 14-01-00379
The first named author supported in part by research funds of INdAM (G.N.F.M.), M.U.R.S.T. and Università di Roma “La Sapienza”. The second named author supported in part by RFFI grant N 14-01-00379. The third named author supported in part by Research Funds of INdAM (GNFM), MURST and Università Roma Tre.
Received: November 18, 2015; in revised form March 15, 2016
Bibliographic databases:
Document Type: Article
MSC: 60J10, 60K37, 82B41
Language: English
Citation: C. Boldrighini, R. A. Minlos, A. Pellegrinotti, “Random walk in dynamic random environment with long-range space correlations”, Mosc. Math. J., 16:4 (2016), 621–640
Citation in format AMSBIB
\Bibitem{BolMinPel16}
\by C.~Boldrighini, R.~A.~Minlos, A.~Pellegrinotti
\paper Random walk in dynamic random environment with long-range space correlations
\jour Mosc. Math.~J.
\yr 2016
\vol 16
\issue 4
\pages 621--640
\mathnet{http://mi.mathnet.ru/mmj612}
\crossref{https://doi.org/10.17323/1609-4514-2016-16-4-621-640}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3598498}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391211000002}
Linking options:
  • https://www.mathnet.ru/eng/mmj612
  • https://www.mathnet.ru/eng/mmj/v16/i4/p621
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:213
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024