Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2002, Volume 2, Number 3, Pages 435–475
DOI: https://doi.org/10.17323/1609-4514-2002-2-3-435-475
(Mi mmj60)
 

This article is cited in 16 scientific papers (total in 16 papers)

Toric residues and mirror symmetry

V. V. Batyrev, E. N. Materov

Eberhard Karls Universität Tübingen
Full-text PDF Citations (16)
References:
Abstract: We develop some ideas of Morrison and Plesser and formulate a precise mathematical conjecture, which has close relations to toric mirror symmetry. Our conjecture, we call it the toric residue mirror conjecture, is that the generating functions of intersection numbers of divisors on a special sequence of simplicial toric varieties are power series expansions of some rational functions obtained as toric residues. We expect that this conjecture holds true for all Gorenstein toric Fano varieties associated with reflexive polytopes and give some evidence for that. The proposed conjecture suggests a simple method for computing Yukawa couplings for toric mirror Calabi–Yau hypersurfaces without solving systems of differential equations. We make several explicit computations for Calabi–Yau hypersurfaces in weighted projective spaces and in products of projective spaces.
Key words and phrases: Residues, toric varieties, intersection numbers, mirror symmetry.
Received: March 21, 2002
Bibliographic databases:
MSC: 14M25
Language: English
Citation: V. V. Batyrev, E. N. Materov, “Toric residues and mirror symmetry”, Mosc. Math. J., 2:3 (2002), 435–475
Citation in format AMSBIB
\Bibitem{BatMat02}
\by V.~V.~Batyrev, E.~N.~Materov
\paper Toric residues and mirror symmetry
\jour Mosc. Math.~J.
\yr 2002
\vol 2
\issue 3
\pages 435--475
\mathnet{http://mi.mathnet.ru/mmj60}
\crossref{https://doi.org/10.17323/1609-4514-2002-2-3-435-475}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1988969}
\zmath{https://zbmath.org/?q=an:1026.14016}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208593500001}
\elib{https://elibrary.ru/item.asp?id=8379131}
Linking options:
  • https://www.mathnet.ru/eng/mmj60
  • https://www.mathnet.ru/eng/mmj/v2/i3/p435
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:411
    References:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024