Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2016, Volume 16, Number 2, Pages 237–273
DOI: https://doi.org/10.17323/1609-4514-2016-16-2-237-273
(Mi mmj599)
 

This article is cited in 18 scientific papers (total in 18 papers)

Topology and geometry of the canonical action of $T^4$ on the complex Grassmannian $G_{4,2}$ and the complex projective space $\mathbb CP^5$

Victor M. Buchstabera, Svjetlana Terzićb

a Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina Street 8, 119991 Moscow, Russia
b Faculty of Science, University of Montenegro, Dzordza Vasingtona bb, 81000 Podgorica, Montenegro
Full-text PDF Citations (18)
References:
Abstract: We consider the canonical action of the compact torus $T^4$ on the complex Grassmann manifold $G_{4,2}$ and prove that the orbit space $G_{4,2}/T^4$ is homeomorphic to the sphere $S^5$. We prove that the induced map from $G_{4,2}$ to the sphere $S^5$ is not smooth and describe its smooth and singular points. We also consider the action of $T^4$ on $\mathbb CP^5$ induced by the composition of the second symmetric power representation of $T^4$ in $T^6$ and the standard action of $T^6$ on $\mathbb CP^5$ and prove that the orbit space $\mathbb CP^5/T^4$ is homeomorphic to the join $\mathbb CP^2\ast S^2$. The Plücker embedding $G_{4,2}\subset\mathbb CP^5$ is equivariant for these actions and induces the embedding $\mathbb CP^1\ast S^2\subset\mathbb CP^2\ast S^2$ for the standard embedding $\mathbb CP^1\subset\mathbb CP^2$.
All our constructions are compatible with the involution given by the complex conjugation and give the corresponding results for the real Grassmannian $G_{4,2}(\mathbb R)$ and the real projective space $\mathbb RP^5$ for the action of the group $\mathbb Z_2^4$. We prove that the orbit space $G_{4,2}(\mathbb R)/\mathbb Z_2^4$ is homeomorphic to the sphere $S^4$ and that the orbit space $\mathbb RP^5/\mathbb Z_2^4$ is homeomorphic to the join $\mathbb RP^2\ast S^2$.
Key words and phrases: torus action, orbit, space, Grassmann manifold, complex projective space.
Received: April 29, 2015; in revised form October 21, 2015
Bibliographic databases:
Document Type: Article
Language: English
Citation: Victor M. Buchstaber, Svjetlana Terzić, “Topology and geometry of the canonical action of $T^4$ on the complex Grassmannian $G_{4,2}$ and the complex projective space $\mathbb CP^5$”, Mosc. Math. J., 16:2 (2016), 237–273
Citation in format AMSBIB
\Bibitem{BucTer16}
\by Victor M.~Buchstaber, Svjetlana~Terzi\'c
\paper Topology and geometry of the canonical action of $T^4$ on the complex Grassmannian $G_{4,2}$ and the complex projective space~$\mathbb CP^5$
\jour Mosc. Math.~J.
\yr 2016
\vol 16
\issue 2
\pages 237--273
\mathnet{http://mi.mathnet.ru/mmj599}
\crossref{https://doi.org/10.17323/1609-4514-2016-16-2-237-273}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3480703}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391209600002}
\elib{https://elibrary.ru/item.asp?id=27145231}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962027590}
Linking options:
  • https://www.mathnet.ru/eng/mmj599
  • https://www.mathnet.ru/eng/mmj/v16/i2/p237
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:537
    Full-text PDF :4
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024