Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2016, Volume 16, Number 1, Pages 1–25
DOI: https://doi.org/10.17323/1609-4514-2016-16-1-1-25
(Mi mmj592)
 

This article is cited in 4 scientific papers (total in 4 papers)

The classification of certain linked $3$-manifolds in $6$-space

S. Avvakumov

Institute of Science and Technology Austria, IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
Full-text PDF Citations (4)
References:
Abstract: We classify smooth Brunnian (i.e., unknotted on both components) embeddings $(S^2\times S^1)\sqcup S^3 \to\mathbb R^6$. Any Brunnian embedding $(S^2\times S^1)\sqcup S^3\to\mathbb R^6$ is isotopic to an explicitly constructed embedding $f_{k,m,n}$ for some integers $k,m,n$ such that $m\equiv n\pmod2$. Two embeddings $f_{k,m,n}$ and $f_{k',m',n'}$ are isotopic if and only if $k=k'$, $m\equiv m'\pmod{2k}$ and $n\equiv n'\pmod{2k}$.
We use Haefliger's classification of embeddings $S^3\sqcup S^3\to\mathbb R^6$ in our proof. The relation between the embeddings $(S^2\times S^1)\sqcup S^3\to\mathbb R^6$ and $S^3\sqcup S^3\to\mathbb R^6$ is not trivial, however. For example, we show that there exist embeddings $f\colon(S^2\times S^1)\sqcup S^3\to\mathbb R^6$ and $g,g'\colon S^3\sqcup S^3\to\mathbb R^6$ such that the componentwise embedded connected sum $f\#g$ is isotopic to $f\#g'$ but $g$ is not isotopic to $g'$.
Key words and phrases: classification of embeddings, framed cobordism, linked manifolds.
Funding agency Grant number
Dobrushin Foundation
Russian Foundation for Basic Research 15-01-06302
Supported in part by Dobrushin fellowship, 2013, and by RFBR grant 15-01-06302.
Received: October 28, 2014; in revised form September 7, 2015
Bibliographic databases:
Document Type: Article
MSC: Primary 57R40, 57R52; Secondary 57Q45, 55P10
Language: English
Citation: S. Avvakumov, “The classification of certain linked $3$-manifolds in $6$-space”, Mosc. Math. J., 16:1 (2016), 1–25
Citation in format AMSBIB
\Bibitem{Avv16}
\by S.~Avvakumov
\paper The classification of certain linked $3$-manifolds in $6$-space
\jour Mosc. Math.~J.
\yr 2016
\vol 16
\issue 1
\pages 1--25
\mathnet{http://mi.mathnet.ru/mmj592}
\crossref{https://doi.org/10.17323/1609-4514-2016-16-1-1-25}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3470574}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000386360200001}
Linking options:
  • https://www.mathnet.ru/eng/mmj592
  • https://www.mathnet.ru/eng/mmj/v16/i1/p1
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:221
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024