Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2002, Volume 2, Number 2, Pages 403–431
DOI: https://doi.org/10.17323/1609-4514-2002-2-2-403-431
(Mi mmj59)
 

This article is cited in 33 scientific papers (total in 33 papers)

Very simple 2-adic representations and hyperelliptic Jacobians

Yu. G. Zarhin
Full-text PDF Citations (33)
References:
Abstract: Let $K$ be a field of characteristic zero, $n\ge 5$ an integer, $f(x)$ an irreducible polynomial over $K$ of degree $n$, whose Galois group is either the full symmetric group $\mathrm{S}_n$ or the alternating group $\mathrm{A}_n$. Let $C\colon y^2 = f(x)$ be the corresponding hyperelliptic curve and $X = J(C)$ its Jacobian defined over $K$. For each prime $\ell$ we write $V_{\ell}(X)$ for the $\mathbf{Q}_{\ell}$-Tate module of $X$ and $e_{\lambda}$ for the Riemann form on $V_{\ell}(X)$ attached to the theta divisor. Let $\mathfrak{sp}(V_{\ell}(X),e_{\lambda})$ be the $\mathbf{Q}_{\ell}$-Lie algebra of the symplectic group of $e_{\lambda}$. Let $\mathfrak{g}_{\ell,X}$ be the $\mathbf{Q}_{\ell}$-Lie algebra of the image of the Galois group $\mathrm{Gal}(K)$ of $K$ in $\mathrm{Aut}(V_{\ell}(X))$. Assuming that $K$ is finitely generated over $\mathbb{Q}$, we prove that $\mathfrak{g}_{\ell,X}=\mathbf{Q}_{\ell}\operatorname{Id}\oplus \mathfrak{sp}(V_{\ell}(X),e_{\lambda})$ where $\operatorname{Id}$ is the identity operator.
Key words and phrases: Abelian varieties, $\ell$-adic representations, hyperelliptic Jacobians, very simple representations.
Received: September 8, 2001; in revised form February 28, 2002
Bibliographic databases:
MSC: Primary 14H40; Secondary 14K05, 11G30, 11G10
Language: English
Citation: Yu. G. Zarhin, “Very simple 2-adic representations and hyperelliptic Jacobians”, Mosc. Math. J., 2:2 (2002), 403–431
Citation in format AMSBIB
\Bibitem{Zar02}
\by Yu.~G.~Zarhin
\paper Very simple 2-adic representations and hyperelliptic Jacobians
\jour Mosc. Math.~J.
\yr 2002
\vol 2
\issue 2
\pages 403--431
\mathnet{http://mi.mathnet.ru/mmj59}
\crossref{https://doi.org/10.17323/1609-4514-2002-2-2-403-431}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1944511}
\zmath{https://zbmath.org/?q=an:1082.11039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208593400008}
\elib{https://elibrary.ru/item.asp?id=8379130}
Linking options:
  • https://www.mathnet.ru/eng/mmj59
  • https://www.mathnet.ru/eng/mmj/v2/i2/p403
  • This publication is cited in the following 33 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:339
    References:79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024