Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2015, Volume 15, Number 4, Pages 727–740
DOI: https://doi.org/10.17323/1609-4514-2015-15-4-727-740
(Mi mmj583)
 

This article is cited in 3 scientific papers (total in 3 papers)

Explicit upper bounds for residues of Dedekind zeta functions

Stéphane R. Louboutin

Institut de Mathématiques de Marseille, Aix Marseille Université, 163 Avenue de Luminy, Case 907, 13288 Marseille Cedex 9, FRANCE
Full-text PDF Citations (3)
References:
Abstract: Explicit bounds on the residues at $s=1$ of the Dedekind zeta-functions of number fields (in terms of their degree and of the logarithm of the absolute value of their discriminant) have long been known. They date back to C. L. Siegel and E. Landau. The author gave a neat explicit bound in 2000, the best known bound until recently. In 2012 X. Li improved upon this bound. His results, although effective, were not explicit. Here we make one of his two bounds explicit and determine when it is the best known one.
Key words and phrases: Dedekind zeta functions, residues, Stechkin lemma.
Received: January 30, 2015; in revised form August 25, 2015
Bibliographic databases:
Document Type: Article
MSC: Primary 11R42; Secondary 11R29
Language: English
Citation: Stéphane R. Louboutin, “Explicit upper bounds for residues of Dedekind zeta functions”, Mosc. Math. J., 15:4 (2015), 727–740
Citation in format AMSBIB
\Bibitem{Lou15}
\by St\'ephane~R.~Louboutin
\paper Explicit upper bounds for residues of Dedekind zeta functions
\jour Mosc. Math.~J.
\yr 2015
\vol 15
\issue 4
\pages 727--740
\mathnet{http://mi.mathnet.ru/mmj583}
\crossref{https://doi.org/10.17323/1609-4514-2015-15-4-727-740}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438830}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000368530900009}
Linking options:
  • https://www.mathnet.ru/eng/mmj583
  • https://www.mathnet.ru/eng/mmj/v15/i4/p727
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:177
    References:95
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024