Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2015, Volume 15, Number 4, Pages 629–652
DOI: https://doi.org/10.17323/1609-4514-2015-15-4-629-652
(Mi mmj578)
 

This article is cited in 3 scientific papers (total in 3 papers)

Sur une équation fonctionnelle approché due à J. R. Wilton

Michel Balazarda, Bruno Martinb

a Institut de Mathématiques de Marseille, CNRS, Université d'Aix-Marseille, Campus de Luminy, Case 907, 13288 Marseille Cedex 9, FRANCE
b Laboratoire de Mathématiques Pures et Appliquées, CNRS, Université du Littoral Côte d'Opale, 50 rue F. Buisson, BP 599, 62228 Calais Cedex, FRANCE
Full-text PDF Citations (3)
References:
Abstract: We give a new proof of an approximate functional equation, due to J. R. Wilton, for a trigonometric sum involving the divisor function. This allows us to improve on Wilton's error term and to give an explicit formula for an unspecified function involved in the functional equation.
Key words and phrases: approximate functional equations, divisor function, Mellin transform, Hilbert transform.
Received: January 16, 2015; in revised form August 4, 2015
Bibliographic databases:
Document Type: Article
MSC: 11N37, 11L07
Language: French
Citation: Michel Balazard, Bruno Martin, “Sur une équation fonctionnelle approché due à J. R. Wilton”, Mosc. Math. J., 15:4 (2015), 629–652
Citation in format AMSBIB
\Bibitem{BalMar15}
\by Michel~Balazard, Bruno~Martin
\paper Sur une \'equation fonctionnelle approch\'e due \`a~J.\,R.~Wilton
\jour Mosc. Math.~J.
\yr 2015
\vol 15
\issue 4
\pages 629--652
\mathnet{http://mi.mathnet.ru/mmj578}
\crossref{https://doi.org/10.17323/1609-4514-2015-15-4-629-652}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438825}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000368530900004}
Linking options:
  • https://www.mathnet.ru/eng/mmj578
  • https://www.mathnet.ru/eng/mmj/v15/i4/p629
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025