Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2015, Volume 15, Number 4, Pages 609–613
DOI: https://doi.org/10.17323/1609-4514-2015-15-4-609-613
(Mi mmj576)
 

This article is cited in 4 scientific papers (total in 4 papers)

On the commutator map for real semisimple Lie algebras

Dmitri Akhiezer

Institute for Information Transmission Problems, 19 B. Karetny per., 127994 Moscow, Russia
Full-text PDF Citations (4)
References:
Abstract: We find new sufficient conditions for the commutator map of a real semisimple Lie algebra to be surjective. As an application, we prove the surjectivity of the commutator map for all simple algebras except $\mathfrak{su}_{p,q}$ ($p$ or $q>1$), $\mathfrak{so}_{p,p+2}$ ($p$ odd or $p=2$), $\mathfrak u^*_{2m+1}(\mathbb H)$ ($m\ge1$) and $EIII$.
Key words and phrases: Lie algebra, Cartan decomposition.
Funding agency Grant number
Deutsche Forschungsgemeinschaft SFB/TR 12
SPP 1388
Supported by SFB/TR 12 and SPP 1388 of the DFG.
Received: January 14, 2015; in revised form June 7, 2015
Bibliographic databases:
Document Type: Article
MSC: 17B20
Language: English
Citation: Dmitri Akhiezer, “On the commutator map for real semisimple Lie algebras”, Mosc. Math. J., 15:4 (2015), 609–613
Citation in format AMSBIB
\Bibitem{Akh15}
\by Dmitri~Akhiezer
\paper On the commutator map for real semisimple Lie algebras
\jour Mosc. Math.~J.
\yr 2015
\vol 15
\issue 4
\pages 609--613
\mathnet{http://mi.mathnet.ru/mmj576}
\crossref{https://doi.org/10.17323/1609-4514-2015-15-4-609-613}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438823}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000368530900002}
Linking options:
  • https://www.mathnet.ru/eng/mmj576
  • https://www.mathnet.ru/eng/mmj/v15/i4/p609
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025