Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2015, Volume 15, Number 3, Pages 497–509
DOI: https://doi.org/10.17323/1609-4514-2015-15-3-497-509
(Mi mmj572)
 

This article is cited in 10 scientific papers (total in 10 papers)

Distribution of values of $L'/L(\sigma,\chi_D)$

Mariam Mourtada, V. Kumar Murty

Department of Mathematics, University of Toronto, 40 St. George Street, Toronto, Ontario M5S 2E4
Full-text PDF Citations (10)
References:
Abstract: We study the distribution of values of $L'/L(\sigma,\chi_D)$, where $\sigma$ is real $>\frac12$, $D$ a fundamental discriminant, and $\chi_D$ the real character attached to $D$. In particular, assuming the GRH, we prove that for each $\sigma>1/2$ there is a density function $\mathcal Q_\sigma$ with the property that for real numbers $\alpha\leq\beta$, we have
\begin{equation*} \begin{split} \#\{D~{\text fundamental\ discriminants}\ &{\text such\ that}\ |D|\leq Y,\ {\text and}\\ &\alpha\leq\frac{L'}L(\sigma,\chi_D)\leq\beta\}\sim\frac6{\pi^2\sqrt{2\pi}}Y\int_\alpha^\beta\mathcal Q_\sigma(x)\,dx. \end{split} \end{equation*}
Our work is based on and strongly motivated by the earlier work of Ihara and Matsumoto [7].
Key words and phrases: $L$-functions, logarithmic derivatives, distribution of values, Riemann hypothesis.
Received: August 4, 2013; in revised form September 25, 2014
Bibliographic databases:
Document Type: Article
MSC: 11M06, 11M26
Language: English
Citation: Mariam Mourtada, V. Kumar Murty, “Distribution of values of $L'/L(\sigma,\chi_D)$”, Mosc. Math. J., 15:3 (2015), 497–509
Citation in format AMSBIB
\Bibitem{MouMur15}
\by Mariam~Mourtada, V.~Kumar~Murty
\paper Distribution of values of~$L'/L(\sigma,\chi_D)$
\jour Mosc. Math.~J.
\yr 2015
\vol 15
\issue 3
\pages 497--509
\mathnet{http://mi.mathnet.ru/mmj572}
\crossref{https://doi.org/10.17323/1609-4514-2015-15-3-497-509}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3427436}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000365392600005}
Linking options:
  • https://www.mathnet.ru/eng/mmj572
  • https://www.mathnet.ru/eng/mmj/v15/i3/p497
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024