|
This article is cited in 13 scientific papers (total in 13 papers)
Nodal domains in the square – the Neumann case
Bernard Helfferab, Mikael Persson Sundqvistc a Laboratoire Jean Leray, Université de Nantes, France
b Laboratoire de Mathématiques UMR CNRS 8628, Université Paris-Sud-Bât 425, F-91405 Orsay Cedex, France
c Lund University, Department of Mathematical Sciences, Lund, Sweden
Abstract:
Å. Pleijel has proved that in the case of the Laplacian on the square with Neumann condition, the equality in the Courant nodal theorem (Courant sharp situation) can only be true for a finite number of eigenvalues. We identify five Courant sharp eigenvalues for the Neumann Laplacian in the square, and prove that there are no other cases.
Key words and phrases:
nodal domains, Courant theorem, square, Neumann.
Received: November 28, 2014; in revised form March 4, 2015
Citation:
Bernard Helffer, Mikael Persson Sundqvist, “Nodal domains in the square – the Neumann case”, Mosc. Math. J., 15:3 (2015), 455–495
Linking options:
https://www.mathnet.ru/eng/mmj571 https://www.mathnet.ru/eng/mmj/v15/i3/p455
|
|